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Abstract

In this paper I estimate the market’s opinion of ex-ante costs of financial distress

(CFD) from a structurally motivated model of the industry, using a panel dataset

of monthly market values of debt and equity for 244 firms in 22 industries between

1994 and 2004. Costs of financial distress are identified from the market values and

systematic risk of a company’s debt and equity. The market expects costs of financial

distress to be 0-11% of firm value for observed levels of leverage. In bankruptcy, the

costs of distress can rise as high as 31%. Across industries, CFD are driven primarily

by the potential for under-investment problems and distressed asset fire-sales, as

measured by spending on research and development and the proportion of intangible

assets in the firm. There is considerable empirical support for the hypothesis that

firms choose a leverage ratio based on the trade-off between tax benefits and costs

of financial distress. The results do not confirm the under-leverage puzzle for firms

with publicly traded debt.
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1 Introduction

Costs of financial distress (CFD) are an important component of the Trade-Off theory

of optimal capital structure (Jensen and Meckling, 1976, Myers, 1977). Based on the

Modigliani-Miller (1958) result, this paper derives a new relationship between a firm’s share

price, its systematic risk (beta), and its cost of financial distress. This relationship separates

financial costs from economic costs of distress, and it forms the basis for a structural

empirical model that separately estimates these costs. It is important to separate economic

and financial distress because only the costs of financial distress matter for optimal capital

structure.

I estimate the model on a sample of U.S. companies, using a new Markov Chain Monte

Carlo (MCMC) procedure. Within the sample, ex-ante expected CFD are 4% of firm value

on average, and vary between 0 and 11% across industries. At bankruptcy, CFD are as

high as 31% of firm value. Consistent with the debt overhang problem (Myers, 1977),

industries with large growth opportunities (measured as high research and development

expenses and market-to-book-ratios) tend to have high potential CFD. The risk of asset

fire-sales (Shleifer and Vishny, 1992), proxied by a high proportion of intangible assets, is

also an important cost of financial distress. In addition, CFD tend to be higher in industries

with unique products that rely on post-sales service, warranty and parts (Titman, 1984,

and Titman and Opler, 1994). I do not find that human capital and ease of refinancing are

important drivers of CFD.

Industries with higher potential costs of financial distress adopt lower levels of leverage.

Generally, the model predicts optimal capital structures that are close to observed capital

structures, suggesting that the magnitude of the under-leverage puzzle (Graham, 2000) is

sensitive to the measurement of costs of financial distress. Measuring CFD carefully, I find

that the puzzle appears less severe for companies with publicly traded debt.

Empirical studies of CFD face a fundamental problem of separating financial costs from

economic costs of distress. This problem arises because financial distress is often caused

by economic distress, and it is difficult to empirically separate a drop in a firm’s value into

the value lost due to a deteriorating business (economic distress) and the value lost due to

the increase in the chance of default induced by the firm’s debt (financial distress).
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I solve this identification problem by exploring a relationship between CFD and system-

atic risks (betas) of debt and equity derived from the Modigliani-Miller result. Identification

comes from the insight that the magnitude of the CFD affects how a change in leverage

translates into changes in the systematic risks of debt and equity. For example, for a firm

with large CFD, a small increase in leverage leads to a large drop in the value of equity.

Consequently, the equity beta is larger than the standard MM relationship (without costs

of financial distress) predicts. Assuming a constant asset beta across a cross-section of firms

within each industry, I recover implied CFD from differences in leverage and differences in

systematic risks of their debt and equity.

The identification relies on a number of assumptions. First, I assume that within

industries, firms have the same asset betas. Simulations (in appendix C) show that the

results are robust to reasonable violations of this assumption. The second assumption

states that firms in an industry have the same costs of financial distress at the same level

of leverage. Both assumptions are likely to hold when firms within an industry are similar

in terms of the types of assets in place, growth opportunities, production technology and

capital structure complexity. Although I do not empirically pursue other specifications of

CFD here, the identification argument applies more generally to situations where CFD are

a function of the firm’s observable characteristics, such as credit ratings and market-to-book

ratios, and can also depend on the value and risk of the unlevered assets. However, when

CFD is a function of unobserved characteristics, an endogeneity problem raises additional

complications.

The analysis focuses on measuring the costs of financial distress. Firms also realize a

benefit of the tax shield arising from the deductibility of interest payments. In principle, the

model identifies the effect of costs of financial distress net of the value of the tax shield, but

two simple assumptions about the tax benefits suffice to calculate upper and lower bounds

on CFD. For the purpose of comparing optimal and observed capital structures it is not

necessary to separate tax benefits and CFD, because a firm’s optimal capital structure only

depends on the net effect.

Few papers in the empirical literature attempt to measure the magnitude of costs of

financial distress. The seminal study by Altman (1984) finds sizeable costs of distress but
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does not break them down into the financial and economic components. Summers and

Cutler (1988) exploit a lawsuit between Texaco and Pennzoil to separate these costs and

conclude that ex-ante CFD are around 9% of Texaco’s value. Andrade and Kaplan (1998)

investigate a sample of 31 companies that became distressed after undergoing leveraged

buyouts. They find ex-post costs of distress between 10 and 23% of firm value and conclude

that the costs are modest, but acknowledge that low CFD may be the reason these firms

were highly levered initially. The methodology developed in this paper does not rely on a

specific event, such as a lawsuit or LBO. It applies to any sample of firms, and the analysis

complements prior studies by employing a substantially larger dataset. Finally, Almeida

and Philippon (2006) use the ex-post CFD of Andrade and Kaplan and calculate the ex-

ante costs of financial distress using risk-neutral probabilities of default in a multi-period

setting. Consistent with the results in this paper, they find CFD of up to 13% of firm value

for investment grade firms.

The data consists of a panel with monthly data on 244 publicly traded companies

in 22 industries, between 1994 and 2004. Using a novel MCMC procedure (see Robert

and Casella, 1999, and Carter and Kohn, 1994), I estimate ex-ante CFD that include the

direct and indirect costs of financial distress that are realized both before and after default.

This is more general than the usual way of estimating ex-ante CFD as the product of

the probability of default and a ”loss-given-default” (e.g. Leland, 1994, and Almeida and

Philippon, 2006), which implies that there is no loss absent default. It is important to take

into account the costs of financial distress that occur before default because these losses can

be substantial even if the company never files for bankruptcy.1 The estimation accounts

for the uncertainty in estimating betas of infrequently traded corporate bonds, but faces

a missing variables problem since the market values of bank debt and capitalized leases

are unobserved. To assess the severity of this problem, I estimate the model under two

alternative sets of assumptions, providing upper and lower bounds, and find that estimated

CFD are robust across these specifications.

The paper is organized as follows: the next section explores the relation between costs

1Many companies restructure outside of court after a period of financial distress (Gilson, 1997), and

Andrade and Kaplan (1998) find that a substantial portion of the costs are suffered before a Chapter 11

filing.
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of financial distress and the market values and betas of corporate debt and equity, and how

this relation can be inverted to identify the costs of financial distress. Section 3 explains

the estimation methodology that applies the model to the data. The data is presented in

section 4. I discuss the results in section 5. Finally, section 6 concludes.

2 Identification of the Costs of Financial Distress

In this section I first generalize the Modigliani-Miller (1958) relations to show how the

market discounts all CFD into the market prices and betas of a company’s securities. I

then present the identification assumptions that allow for the estimation of expected CFD

from the market prices and betas of corporate debt and equity.

2.1 Modigliani-Miller with Costs of Financial Distress

Modigliani and Miller consider the firm as a portfolio of all outstanding claims on the

company. The total market value of the company at time t, V L
t , is the sum of the market

values of the individual claims:

V L
t = Dt + Et (1)

Dt is the market value of corporate debt and Et is the market capitalization of equity at

time t.2

A different way of decomposing the same company is as a portfolio of the assets of the

firm (the unlevered firm) and a security whose value represents the effects of debt financing:

V L
t = V U

t − Ct (2)

The market value of the unlevered firm is V U
t , and it is equal to the value of the company

at time t if all its debt were repurchased by its shareholders. Interest tax shields and costs

of financial distress cause V U
t to be different from V L

t , and therefore V U
t is never directly

observed (unless the firm truly has no debt in its capital structure). The difference between

2The debt and equity claims can be decomposed further into corporate bonds, bank debt and capitalized

leases, and common and preferred equity, but it is not necessary to do so for the purpose of this paper.
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V U
t and V L

t is a fictitious security, Ct, which is defined as the expected present value at

time t of lost future cash flows due to past financing decisions, minus the present value of

the interest tax shield. A positive Ct means that the costs of financial distress outweigh

the tax benefits of debt, and a company is worth less with debt in its capital structure than

it is worth without debt. The market discounts all expected future CFD, so Ct includes

the direct and indirect CFD that are realized both before and after default, and is on an

ex-ante basis.3

The company also has systematic risk, βL
t , proportional to the (conditional) covariance

of returns to the firm with some risk factor.4 The decomposition of the firm as a portfolio

of debt and equity securities yields an expression of βL
t as the weighted average of the debt

and equity betas:

βL
t =

Dt

V L
t

βD
t +

Et

V L
t

βE
t (3)

The betas of debt and equity can be estimated from observed data, so that βL
t itself can

be calculated from market data.

Using the decomposition of the company as the value of unlevered assets and CFD net

of tax benefits, the beta of the levered firm can equivalently be written as:

βL
t =

V U
t

V L
t

βU
t −

Ct

V L
t

βC
t (4)

By definition, the systematic risk of the unlevered assets, βU
t , is not affected by the capital

structure of the firm. The effect of leverage on the beta of the levered firm, βL
t , is driven

entirely by the costs of financial distress net of tax benefits, Ct, and its systematic risk,

βC
t . When tax shields dominate, Ct < 0 and βL

t is lower than the beta of the unlevered

firm, βU
t , because the tax shield is less risky than the firm’s assets. This is analogous to

3Examples of CFD are the impaired ability to do business due to customers’ concerns for parts, service

and warranty interruptions or cancelations if the firm files for bankruptcy (Titman and Opler, 1994),

investment distortions due to debt overhang (Myers, 1977) and asset substitution (Jensen and Meckling,

1976), distressed asset fire-sales (Shleifer and Vishny, 1992), employees leaving the firm or spending their

time looking for another job, and management spending much of its time talking to creditors and investment

bankers about reorganization and refinancing plans instead of running the business.
4At this point it does not matter what is the risk factor, or how many risk factors there are. In the

empirical implementation I use the beta with the market portfolio.
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investing in a portfolio of two securities with positive betas, where each security has a

positive weight. When CFD become large, βL
t > βU

t because the weight of the portfolio

invested in the unlevered assets becomes larger than 1 (V U
t /V L

t > 1 when Ct > 0). In

addition, costs of financial distress amplify the economic shocks to the firm; bad states

become worse because in addition to a bad economic shock, the costs of financial distress

increase, causing the firm to lose even more value (and vice versa for good shocks). In

equation (4), this result implies that βC
t has the opposite sign of βU

t . The effect of CFD on

βL
t is therefore equivalent to shorting a negative beta security to invest in a positive beta

security. Note that since V U
t and Ct are unobserved, their betas are unobserved as well.

By the arbitrage argument first stated by Modigliani-Miller (1958), the market values

and betas of the two portfolio decompositions of the firm have to be equal:

V U
t − Ct = Dt + Et (5)

V U
t

V L
t

βU
t −

Ct

V L
t

βC
t =

Dt

V L
t

βD
t +

Et

V L
t

βE
t (6)

The first equation states that the market values of the two portfolios, expressed in equations

(1) and (2), have to be the same. Equation (6) is derived by equating (3) and (4), and

captures the mechanical relation between the asset beta (βU
t ) and the betas of costs of

financial distress, corporate debt and equity (for a proof, see appendix A).

To illustrate the effect of tax benefits and costs of financial distress on the value and

beta of the levered firm, I will first consider two traditional cases: the Modigliani-Miller

(1958) case with no taxes and no CFD, and the case of constant marginal tax rates and no

CFD. Then I consider the same two cases but include costs of financial distress.

In the traditional Modigliani-Miller (1958) case with no tax benefits and no costs of

financial distress, Ct = 0. Equations (5)-(6) reduce to the well-known formulas:

V U
t = Dt + Et (7)

βU
t =

Dt

V U
t

βD
t +

Et

V U
t

βE
t (8)

By equations (1) and (3), the right side of (7) and (8) are the value and the beta of the

levered firm, V L
t and βL

t , respectively. Both V L
t and βL

t are unaffected by the leverage ratio

Lt ≡ Dt/V
L
t . The top-left graph in figure 1 illustrates how the betas of corporate debt and

equity vary with leverage.
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In the presence of a constant marginal tax rate, τ , but no costs of financial distress,

Bierman and Oldfield (1979) show that the present value of the tax shield equals τDt.

This implies that Ct = −τDt, since Ct is by definition negative if tax benefits outweigh

CFD. Equation (5) then becomes V L
t = V U

t + τDt, i.e. the value of the levered firm equals

the value of the unlevered firm plus the present value of the interest tax shield. From the

expression for Ct it follows that the return to C is equal to the return to debt, so that

βC
t = βD

t .5 Plugging this into equation (6) yields:

V U
t

V L
t

βU
t = (1− τ)

Dt

V L
t

βD
t +

Et

V L
t

βE
t (9)

The top-right graph in figure 1 shows how the beta of the levered firm decreases as finan-

cial leverage increases. Assuming in addition that βD
t equals zero results in the standard

textbook formula βE
t =

(
1 + (1−τ)Dt

Et

)
βU

t (see for example Ross et al., 1996, p.469).

Whereas tax benefits increase the value of the levered firm, costs of financial distress

have the opposite effect. Without tax benefits but in the presence of costs of financial

distress, the bottom-left plot in figure 1 illustrates that the levered firm’s beta, βL
t , increases

with leverage. This relation implies that it is optimal for the firm to have no debt in its

optimal capital structure.

With both tax benefits and costs of financial distress, the company’s market value

becomes a hump-shaped function of financial leverage. This is consistent with the Trade-Off

theory of optimal capital structure, in which firms choose the leverage ratio that maximizes

firm value. The levered firm’s beta becomes a U-shaped function of financial leverage, as

illustrated in the bottom-right graph of figure 1. This is a result of the trade-off between

tax benefits and costs of financial distress: whereas tax benefits reduce the firm’s beta when

financial leverage is relatively low, costs of financial distress counter this effect as leverage

increases.

As these examples show, the way the riskiness of the firm, as measured by its beta,

changes with leverage is highly dependent on the existence and magnitude of tax benefits

and costs of financial distress. In the next section I exploit this relation to identify the

5βC
t = βD

t implies that if debt has a positive return, so does Ct. Since Ct < 0 this means Ct becomes

more negative i.e. the present value of tax shields increases in value.
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benefits and costs of financial leverage that matches the variation in levered firm betas

within an industry.

2.2 Identification

The existing literature takes the value equation (5) and treats identification of Ct as a

missing variables problem. Even though the value of the levered firm, Dt +Et, is observed,

both Ct and V U
t are unobserved. It is therefore not possible to recover Ct from equation

(5) alone. Consider the approach in econometric terms by rewriting equation (5) to have

Ct on the left-hand side:

Ct = −(Dt + Et) + V U
t (10)

Take first differences:

∆Ct = −∆(Dt + Et) + ∆V U
t (11)

In this setup, the ∆V U
t term is a missing variable. One can only observe the change in the

value of the levered firm, ∆(Dt + Et), whereas the unlevered firm is not traded. In other

words, it is not possible to separate an observed drop in the value of the levered firm into a

drop in V U
t (economic distress) and an increase in Ct (financial distress). Treating ∆V U

t as

an error term leads to an endogeneity problem because it is correlated with the change in

levered firm value. To resolve this issue, previous studies rely on natural experiments that

exogenously change financial leverage, while leaving the unlevered firm value unchanged

(∆V U
t = 0). Such experiments function like instruments that are correlated with ∆(Dt+Et)

but not with the error term ∆V U
t . Examples of such experiments are lawsuits (Summers

and Cutler, 1988) and leveraged buy-outs (Andrade and Kaplan, 1998).

The natural experiment approach has the advantage of being transparent and requiring

relatively few assumptions. However, it has proven difficult to find suitable experiments

that generate large samples. The largest sample that has been used up to date is by Andrade

and Kaplan (1998) and comprises 31 firms, of which 13 did not suffer an adverse economic

shock (∆V U
t = 0). Moreover, the nature of most experiments introduces a selection bias

into the sample, making it difficult to judge the generality of the results. The quality of the

instrument is an issue, especially since changes in values are measured over a time frame
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of years. The question is whether ∆V U
t was really zero over the period of measurement.

Finally, the first-difference approach only measures the change in Ct. To identify the level

of Ct, one has to assume that Ct is equal to zero either before or after the exogenous

change in leverage. This is not obviously true, especially when there is a value to interest

tax shields that is part of Ct.

The previous literature relies on the value equation (5) for identification of CFD. The

natural experiment approach has one equation and one unknown, ∆Ct, for each observation.

In contrast, I use both the value and beta relations, (5) and (6). This gives me two equations

per observation. With N firms and T months of observed data, there are 2NT equations.

These equations have to solved for 4NT unknowns: the value of unlevered assets and CFD

(V U
t and Ct) and their betas (βU

t and βC
t ), for each firm-month.6 Since it is not possible to

identify 4NT unknowns from 2NT equations, I introduce two identification assumptions:

(A1) The unlevered asset beta, βU
t , is either: (i) the same for some subset of firms, or; (ii)

constant across time for the same firm.

(A2) Costs of financial distress net of tax benefits are a function of observable variables

and the value and beta of the unlevered firm: Ct = C(Xt).

Let the βU
t vary over time but equal across the N firms, which under assumption A1(i)

eliminates (N − 1)T unknowns. Assumption (A2) reduces the 2NT unknown Ct and βC
t

for each firm to a set of k parameters that determine the shape of C(Xt). Together, (A1)

and (A2) reduce the problem to (N + 1)T + k unknowns: the NT unlevered firm values,

the T unlevered asset betas and k parameters. With 2NT equations, observing N firms

over T time periods such that (N − 1)T ≥ k allows to solve for all parameters exactly. For

example, with 3 parameters in the function for Ct, it is sufficient to observe 4 firms for 1

month, or 2 firms for 3 months. A similar derivation holds for assumption A1(ii), when

unlevered asset betas are constant over time but allowed to vary across firms.

6At this point I assume that the debt and equity betas are observed. The estimation of time-varying

betas will be dealt with in the estimation section 3.
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To illustrate the intuition behind the identification approach, consider the following

implementation for a particular industry. Assume the unlevered asset beta with the market

portfolio is equal for firms within the industry, so that A1(i) is satisfied. Let CFD net of

taxes be:

Ct =
(
θ0 + θ1Lt + θ2L

2
t

) · V L
t (12)

with leverage Lt ≡ Dt/V
L
t , the market value of corporate debt divided by the total market

value of the firm. The parameters θ0, θ1 and θ2 are common to all firms within the industry.

Since both Lt and V L
t are observed, this specification satisfies (A2). If two companies in

the same industry have the same level of leverage, they experience the same tax benefits

and costs of financial distress (relative to firm value). The two firms must therefore have

the same risk due to debt financing. Since their unlevered betas are equal by assumption,

they must also have the same levered beta, βL
t . The βL

t of all firms in the industry then fall

on the same graph against leverage, the shape of which depends on the parameters θ0-θ2

alone. Estimating the levered betas of industry constituents from market values of debt

and equity and fitting them against leverage therefore identifies the parameters θ0, θ1 and

θ2.

The assumption that unlevered firms in an industry are equally risky with respect to

the market portfolio is frequently used in the academic literature (e.g. Kaplan and Stein,

1990, Hecht, 2002, and implicitly in Fama and French, 1997). Practitioners also employ

this assumption on a regular basis when using industry asset betas to value companies.

The economic intuition behind this assumption is that the market risk of the operations of

firms within the same industry is equal. Hamada (1972) and Faff, Brooks and Kee (2002)

provide some empirical support for the hypothesis that asset betas with respect to the

market portfolio are the same within industries (as defined by two-digit SIC codes). Other

popular risk factors such as SMB and HML (Fama and French, 1993, 1996) cannot be used

for theoretical reasons: smaller firms within the industry will load higher on SMB than

larger firms, and distressed firms will load higher on HML.7

7If there are other portfolios that unlevered returns to industry constituents load equally on, then it

is possible to add more instances of equation (6). The benefit of doing so is that less data is required to

identify the model parameters. Moreover, introducing more beta relations can be used to over-identify the

model, when each beta relation holds in expectation (see section 3). Over-identification is useful for testing
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Despite the empirical evidence, there are theoretical reasons why firms’ unlevered asset

betas may be related to leverage. For example, firms in economic distress have higher

operating leverage and therefore higher asset betas. On the other hand, firms with higher

asset betas may adopt lower leverage ratios a priori. The simulations in appendix C show

that minor violations of (A1) increase the standard error of parameter estimates of the

function C(Xt), but do not cause severe inconsistency in the parameters, even when βU
t is

correlated with Xt (or in Xt itself).8

The model for Ct in (12) is a simple generalization of both the traditional no-taxes,

no-CFD model (let θ0 = θ1 = θ2 = 0), and the model with tax benefits only (let θ0 = 0,

θ1 = −τ and θ2 = 0 to recover V L
t = V U

t + τDt and equation (9)). The parameter θ2 ≥ 0

makes Ct curve upwards as leverage increases, and captures both the decrease in the present

value of tax benefits and the costs of financial distress. Figure 2 illustrates how θ2 changes

the relation between leverage and βL
t . The economic intuition behind this specification will

be explained in more detail in the next section.

If there are other variables besides leverage that drive CFD and are correlated with Lt,

model (12) is misspecified. If such factors are observable they can simply be added to the

specification of Ct. Problems arise when these variables are unobservable, a violation of

assumption (A2). This results in inconsistent estimators if the unobservables are correlated

with any of the variables in Xt. This is the equivalent of an omitted variables problem in a

standard regression, which causes the error term to be correlated with the explanatory vari-

ables. The effect of such an omitted variables problem is that the estimated parameters in

C(Xt) will be biased upwards (downwards) if the omitted variable is positively (negatively)

correlated with Xt.

The identification argument in this section is based on the model equations holding

exactly. To empirically implement the model, it is necessary to allow for error terms to the

model equations. The next section discusses estimation in detail.

model specification.
8It is possible to relax (A1) by adding the conditional regression equation of returns to the unlevered

firm, (V U
t+1 − V U

t )/V U
t , on the risk factor(s). This is an additional restriction on βU

t that allows it to vary

both over time and across firms while still identifying the system.

12



3 Estimation

The empirical implementation in this paper estimates the following model from a panel

dataset of corporate debt and equity values, for each industry separately:

V U
it

V L
it

= 1 + θ0 + θ1Lit + θ2L
2
it + uit (13)

V U
it

V L
it

· βU
t =

[
1 + θ0 + θ1 + θ2(2Lit − L2

it)
] Dit

V L
it

· βD
it

+
[
1 + θ0 − θ2L

2
it

] Eit

V L
it

· βE
it + vit (14)




rU
it − rf

t

rE
it − rf

t

rD
it − rf

t


 =




αU
i

αE
i

αD
i


 +




βU
t−1

βE
i,t−1

βD
i,t−1


 · (rM

t − rf
t ) + εit (15)

Equations (13) and (14) are derived from a simple specification of costs of financial distress

net of tax benefits for firm i at time t, Cit:

Cit/V
L
it = θ0 + θ1Lit + θ2L

2
it + uit (16)

where the error term uit is by assumption orthogonal to Lit. The N-by-1 vector ut =

[u1t . . . uNt] is distributed i.i.d. Normal with mean zero and constant covariance matrix

R = E(utu
′
t).

In order to give the model a structural interpretation it is important that the error

term uit in equation (16) is independent of Lit. This assumption requires that leverage

is the only variable that drives tax benefits and CFD for all firms within an industry.

This is a reasonable specification if all firms within an industry have similar investment

opportunities, production technology, tangibility of assets and produce similar goods or

services (e.g. durable versus non-durable goods), and these characteristics are stable over

time. Structural models of the firm in the Merton (1974) and Leland (1994) literature then

imply a one-to-one relation between Lit and a firms’ probability of default. A company

files for bankruptcy if the value of the unlevered firm hits the bankruptcy boundary, which

depends on the firm’s use of debt in its capital structure. At this point equity is worthless,

i.e. Lit = 1. Unreported results from the sample in this paper indicate that within each
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industry, highly levered firms tend to have low credit ratings, and vice versa (see also

Molina, 2005).

Companies follow the Trade-Off theory of optimal capital structure but do not contin-

ually adjust leverage back towards the optimum, because of adjustment costs. Economic

shocks to the firm mechanically change its leverage ratio (Welch, 2004) and, by equation

(16), change Cit. Management allows leverage to float around until the gain in market

value from readjusting outweighs the cost.9 Recent work by Leary and Roberts (2005)

reveals evidence in favor of a Trade-Off theory with adjustment costs. Even though all

firms within the industry have the same optimal leverage ratio, the existence of adjustment

costs generates a spread in observed leverage ratios.10 The results in section 5 show that

the observed range of leverage ratios is consistent with relatively low adjustment costs.

In the above scenario the uit represent observation errors in the market values of debt

and equity, and errors in the estimation of the betas. If there are other factors besides

leverage that drive CFD within an industry, they are subsumed by uit and (16) is misspec-

ified. If these factors are correlated with leverage, an omitted variables problem arises. In

this case it is likely that the error term is negatively correlated with leverage. For example,

firms with high growth opportunities may have higher CFD at the same leverage ratio

than firms with few growth opportunities in the same industry. The high-growth firms will

optimally choose to adopt lower leverage ratios, resulting in a negative correlation between

uit and Lit. Both θ1 and θ2 are then biased downwards. Costs of financial distress are

under-estimated and optimal leverage, as implied by the model, is over-estimated. In this

case the specification for Ct can be expanded by adding other observable variables that

capture the omitted factors, allowing firms within an industry to have different CFD at the

same level of financial leverage and hence, different optimal leverage ratios.

Equation (14) describes the relation between a firm’s asset beta and the betas of debt

9Management may even be tempted to adjust away from the optimal leverage ratio to take advantage

of market timing (e.g. Baker and Wurgler, 2000).
10Fischer et al. (1989) show that even small transaction costs can result in huge variations in leverage

ratios while producing a relatively small effect on optimal capital structure, compared to taxes and bank-

ruptcy costs. Note also that there is no simultaneity problem due to Lit and Cit being jointly determined,

because the optimal capital structure is determined by the parameters θ1 and θ2 but not by uit.
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and equity after Ct and its beta are substituted out. The beta of Ct can be expressed as a

function of the debt and equity betas (see appendix A for a proof).11 Since the beta relation

is derived from the value equation, the error term in equation (6) is potentially correlated

with the vector ut. As shown in equation (14), I assume an additive error vt = [v1t . . . vNt]

that is distributed i.i.d Normal with mean zero and covariance matrix S = E(vtv
′
t), and

a general contemporaneous covariance with ut, represented in the matrix Q = E(utv
′
t). If

the correlation between the error terms is substantial, this will show up as large standard

errors of the parameter estimates.

For identification it was assumed that the conditional betas of debt and equity returns

are observed. In reality the betas have to be estimated. The set of equations (15) augments

the model with the regression equations to estimate the conditional betas with the market

portfolio. I define rt as a return from time t-1 to t. rM
t − rf

t is the return on the market

portfolio in excess of the one-month risk-free rate. Since the beta relations derived in this

paper are mechanical, the regression equations in (15) do not imply that the CAPM is the

true asset pricing model, and the intercepts are not required to equal zero. The regressions

are merely used to calculate the necessary betas. The 3N-by-1 idiosyncratic return vector

εt = [ε1t . . . εNt] is orthogonal to the excess market return, and distributed i.i.d. Normal

with mean zero and covariance matrix Σ. The matrix Σ is unrestricted since there is likely

to be substantial cross-sectional correlation between idiosyncratic returns of debt, equity

and unlevered assets of the same firm, as well as between firms within the same industry.

It is also possible that εt is correlated with ut and vt, and the estimation will allow for that

as well.

To satisfy (A1), I assume that the unlevered asset betas, βU
t , are equal for the cross-

section of firms within the same industry. The common unlevered asset beta is allowed to

vary over time and follows a mean-reverting AR(1) process:

βU
t = φ0 + φ1 · βU

t−1 + ηt (17)

with |φ1| < 1. Previous studies (e.g. Berk, Green and Naik, 1999) have argued that betas

should be mean-reverting to ensure stationarity of returns. The AR(1) process on βU
t ,

11Avoiding the substitution of βC
t as a function of debt and equity betas will eliminate any linearization

errors in calculating βC
t , but increases the computational burden of estimation.
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although not strictly necessary, helps to smooth the beta process so that results are more

stable. The error term ηt is distributed i.i.d. Normal with mean zero and variance H, and

is uncorrelated with εt.
12 It is not necessary for estimation to impose a time-series process

on the equity and debt betas, but to ensure smoothness and tighter estimation bounds I

run the estimation with an AR(1) on debt and equity betas, with a general correlation

structure. Mean-reverting debt and equity betas are consistent with leverage being mean-

reverting (see Collin-Dufresne and Goldstein, 2001, for supporting evidence). Appendix C

confirms that this assumption works well in simulations, even when it is violated.

To estimate the model, one could use a relatively simple two-step procedure: 1) esti-

mate the conditional equity and debt betas in (15), for example using rolling regressions,

and; 2) estimate equations (13)-(14) using maximum likelihood, taking the point estimates

of the betas as given. For an application of the first step, see for example Jostova and

Philipov (2005), who use Bayesian methods to estimate stochastic betas that follow an

AR(1) process. However, this procedure ignores the sampling error in the betas in the sec-

ond step, which is quite substantial. Moreover, the likelihood function is difficult to derive.

Integrating out the unlevered asset values and betas from the likelihood is problematic and

slows down the estimation. The dimensionality of the parameter vector makes it difficult

to find the maximum of the likelihood function. Finally, when using rolling regressions a

sizeable number of observations have to be dropped to estimate the first betas.

I estimate the parameters of the model jointly with the conditional betas and unlevered

asset values by using a Markov Chain Monte Carlo (MCMC) algorithm. This simulation-

based estimation methodology is explained in detail in Robert and Casella (1999) and Jo-

hannes and Polson (2004), and in particular for structural models of the firm in Korteweg

and Polson (2006). MCMC provides a way of obtaining a sample from the posterior dis-

tribution of the model’s parameters and unobserved variables (the betas and unlevered

asset values), given the observed values of debt and equity. Once this sample is obtained,

the unobserved variables can be numerically integrated out, leaving the distribution of the

parameters θ0-θ2, conditional on the observed data. This integration step only has to be

12For equity betas one would expect a negative correlation between ηt and εt due to the leverage effect,

although empirical studies do not confirm this (e.g. Braun, Nelson and Sunier, 1995). Since we are

estimating unlevered beta there is no strong theoretical reason to assume a correlation between ηt and εt.
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done once. At the core of this methodology lies the Clifford-Hammersley theorem, which

allows for a break-up of the joint posterior distribution of parameters, betas and unlevered

asset values. Instead of drawing from the joint distribution, the theorem allows for separate

draws from: i) the distribution of parameters given the betas and unlevered asset values; ii)

the distribution of betas given parameters and unobserved values, and; iii) the distribution

of unlevered asset values given parameters and betas. These so-called complete condition-

als are much easier to evaluate and sample from, using simple regressions and basic linear

filters.

As an added bonus, MCMC provides a convenient way to deal with missing data. This

is especially useful for companies with infrequently traded bonds. In essence, missing values

are treated as additional model parameters. The sampling procedure automatically takes

into account the uncertainty over these values, and they are integrated out in the end.

Appendix B describes in detail how a sample from the joint posterior distribution is

obtained by drawing samples from the complete conditionals. Appendix C shows that the

estimation methodology performs well in simulated datasets. The next section describes the

sample selection procedure and provides summary statistics for the data in the empirical

application.

4 Data

I construct a sample of monthly debt and equity values for firms in the Fixed-Income Secu-

rities Database (FISD), which ranges from 1994-2004. The FISD is a database of corporate

bond transactions by pension funds and insurance companies, compiled by Mergent. It is

the most comprehensive source of corporate bond prices available and contains over 1.3

million transactions. The FISD contains transactions of below-investment grade bonds, an

important feature because the market values and betas of distressed firms are especially

informative for estimating costs of financial distress.

From the FISD transactions data I compute month-end bond values for each outstanding

bond issue of every firm. Since not all bonds are traded every month, it is not always

possible to aggregate the individual bond values to obtain the market value of all publicly
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traded debt. To mitigate this missing data problem I group together bonds of the same firm

of equal security and seniority, and maturity within two years of one another. Assuming

these bonds have the same interest rate and credit risk, missing values are calculated from

contemporaneous market-to-book values of bonds in the same group that are observed in the

same month. For those months in which none of the bonds in a group trade, the estimation

algorithm simulates the missing values of each group in every run of the simulation (see

appendix B for details). The large bond issues of a firm trade more often than small issues,

and I select those firms for which the largest bond groups representing at least 80% of total

face value trade at least 50% of the time. On a face-value weighted basis, table II shows

that the corporate bonds in the sample trade about 73% of the time.

The model is estimated on an industry-by-industry basis, defining industries by their

2-digit SIC codes. I use only those industries for which I have data for at least two firms

at any given time, a condition required for identification. The sample comprises 244 firms

in 22 industries, for a total of 22,620 firm-months. I supplement this sample with monthly

market values of equity (common plus preferred) from CRSP and accounting data from

Compustat, matching companies to the FISD by their CUSIP identifier.

Table I gives an overview of the 22 industries in the sample with the average number of

firms and average equity market capitalization in each industry. On average I observe 174

firms each year, representing 5.2% of all Compustat firms in these industries. In terms of

equity market capitalization the sample represents almost $1.9 trillion, which is over 20%

of the market capitalization of all Compustat firms in the sample industries. The sample

is biased towards larger firms, which have more actively traded bonds, but there is no bias

towards more or less distressed firms.

A more troubling issue is that the market values of bank debt and capitalized leases

are never observed because these securities are not in the FISD database. Table II shows

that on average I observe 62% of a firm’s debt on a book value basis. To deal with this

problem I estimate the model using two alternative assumptions for the market value of

the unobserved debt: i) the face value of the unobserved debt, and; ii) apply the credit

spread of the most safe, observed bond group to the unobserved debt. I estimate the credit

spread in each month from observed market values and the Nelson-Siegel (1987) model for
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risk-free rates, using a cubic spline to account for missing months. I then discount the

face value of the unobserved debt by the two-year credit spread to approximate the market

value. Since even the safest publicly traded bonds are more risky than bank debt, this

provides a lower bound on the market value of the unobserved portion of debt.

Using the face value of the unobserved debt instead of the market value provides a

lower bound estimate of CFD because the company is deemed too safe when it gets close

to default: in reality, the market value of bank debt declines, but the face value remains the

same. This means that using the face value of unobserved debt, the estimated debt beta is

too low when the firm is close to bankruptcy and CFD are underestimated. Using credit

spreads of the safest bonds to calculate the market value of the unobserved debt yields an

upper bound on CFD: the bank debt is considered too risky so that the company’s market

value is understated when it is close to bankruptcy (and its debt beta overestimated).

It is important to observe a wide range of leverage ratios within each industry in order to

get a clear picture of how costs of financial distress vary with leverage. Table III shows the

spread of observed leverage by industry, where leverage is measured as: i) the market value

of debt divided by the market value of assets, and; ii) interest cover, defined as EBITDA

divided by interest expense, bounded below at 0 and above at 20. On average, firms have

a leverage ratio of 0.31 with a standard deviation of 0.15. Interest cover is 8.25 on average

and has a standard deviation of 3.91. Both measures indicate a substantial spread in

observed leverage. Table III also reports the range of credit ratings that is observed in each

industry. In general, industries contain firms with credit ratings ranging from AA-AAA

down to B-BB, and even lower for some industries such as airlines (SIC 45) and telecom

(SIC 48).

5 Results

In this section I first examine the estimated magnitude of costs of financial distress. Then

I analyze the characteristics that explain the variation in costs of financial distress across

industries. Finally, I test the model’s predictions regarding optimal capital structure.
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5.1 Costs of Financial Distress

The model specifies the costs of financial distress, relative to the size of the firm, as a

quadratic function of leverage, as shown in equation (16). The posterior mean and standard

deviation of the parameters θ0, θ1 and θ2 for each industry in the sample are reported in

table IV.13 The parameters in table IV are estimated using the face value of unobserved

debt to proxy for its market value. For all industries the posterior mean of θ1 is negative,

whereas it is positive for θ2. This result implies that the value of a company first increases

as the firm takes on debt but starts to decrease when leverage becomes high, consistent

with the Trade-Off theory of optimal capital structure.

At low levels of leverage θ1 dominates, and I interpret θ1 as the (negative) marginal tax

rate that shields the first dollar of debt. The estimate of θ1 equals -0.218 on average across

industries, corresponding to a tax rate of 21.8%. This is lower than the top corporate tax

rate of 35% but roughly equal to the 21.1% relative tax advantage to debt when taking

personal taxes into account.14 Graham (2000) performs a careful study of the present value

of tax benefits and finds a present value of tax benefits of 10% of firm value. However,

Graham’s marginal tax rates are estimated for firms that are already levered up, whereas

θ1 measures the benefit of the very first dollar of debt. Also, θ1 includes non-tax benefits

of debt, such as reductions in the agency costs of equity due to the commitment to pay out

free cash flows (Jensen, 1986).

The cross-sectional differences in θ1 are driven by different marginal tax rates (there is

a negative correlation between θ1 and industry operating profit), but also by differences

in incentive benefits of debt and non-interest tax shields (DeAngelo and Masulis, 1980).

There is a strong positive correlation between θ1 and annual depreciation relative to sales,

suggesting that the tax benefits of debt are lower when earnings are shielded by deprecia-

tion.

13An earlier version of the paper estimated the model on total return volatilities instead of betas, where

volatilities follow a GARCH process. The results are substantially the same.
14The relative tax advantage of debt is calculated using rates from 1999: a corporate tax rate of 35%,

tax on interest payments of 39.6% and 26.8% on dividends and capital gains (equal-weighted between the

14% capital gains tax rate and 39.6% rate on dividends). The numbers are from Brealey and Myers (2000,

p.507).
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The parameter θ2 makes Ct curve upward as leverage increases, and is equal to 0.462

on average, as reported in table IV. Since θ2 captures both the decrease in the present

value of tax benefits and the costs of financial distress, I make two alternative assumptions

to separate the present value of tax benefits from the costs of financial distress: i) any

decrease in tax benefits as leverage increases is entirely due to CFD, and; ii) a firm only

experiences CFD when tax benefits become worthless. These assumptions provide upper

and lower bounds on CFD, respectively.

The upper bound on CFD is equal to θ2L
2. Table VI shows how CFD as a fraction of

firm value depend on the leverage ratio that firms choose. For leverage ratios up to 0.3,

CFD are less than 5% of firm value for most industries. When firms achieve leverage ratios

of 0.5, costs of financial distress rise to an average of 11.6% of firm value. For leverage

ratios higher than 0.5, average CFD grow as high as 37.4% of firm value. Firms in most

industries experience CFD of up to 50% of firm value, but six industries show even higher

costs of distress as firms spiral towards default. It is likely that these extreme CFD are

never observed because firms generally file for bankruptcy before equity becomes worthless

(L = 1). At the observed leverage ratios that industries experienced over the 1994-2004

sample period, the last column in table VI shows that CFD were no more than 7.5% of

firm value and equal to 3.1% on aggregate.

The lower bound on CFD is calculated as the maximum of θ1L + θ2L
2 and zero. The

intuition is that only CFD can push the value of the firm below the value of the unlevered

firm, resulting in C > 0. Table VII shows that the lower bound on CFD is close to zero for

leverage ratios up to 0.5, and increases to an average of 18.4% as leverage approaches one.

For observed levels of leverage, CFD are as little as 0.1% of firm value.

The lower bound on CFD is most realistic for firms that are close to default, because the

present value of tax benefits is likely close to zero (especially if firms tend to be economically

distressed when filing for bankruptcy). If companies default when equity is worthless

(L = 1), the ex-post CFD (or ”loss-given-default”) are θ1 + θ2. Table X shows the mean

and standard deviation of ex-post CFD. The mean estimate of 25-31% of firm value is

higher than the 10-23% found by Andrade and Kaplan (1998). This may be due to sample-

selection in the study of Andrade and Kaplan, but can also be explained by the fact that
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firms do not wait to file for bankruptcy until equity is worthless. The four bankruptcies in

the sample had market leverage (L) of 0.6-0.8 at default. If firms go bankrupt at leverage

ratios of 0.7-0.9 then table VII shows that CFD at default are 8-18% of firm value.15

The estimates of ex-ante CFD do not distinguish between direct and indirect costs of

financial distress. Warner (1977) and Weiss (1990) find that direct costs of financial distress

are small, at around 3.1% of firm value. Based on direct costs of going bankrupt of 3%,

the indirect costs of financial distress at default would be about 5-15%. For ex-ante CFD

the difference is much less important, because the direct costs need to be multiplied by the

risk-neutral probability of default to obtain their present value.

Estimating the model using the credit spread of each company’s safest bonds to calculate

the market value of its bank debt slightly increases the magnitude of estimated CFD. Table

V shows that there is no statistical difference in the average θ0 and θ1 across the two sets of

estimates, because the market value of debt only starts to decline when a firm gets close to

default. The difference is in the distress parameter θ2, which equals 0.526 on average. This

is higher than the estimated 0.462 when the face value of bank debt is used. Table VIII

shows that the upper bound on CFD is 4% of firm value for observed levels of leverage,

and does not exceed 11.1% for any industry. If firms file for bankruptcy when L is in the

range 0.7-0.9 then average CFD at default are 13-26% (see table IX).

The results on ex-ante CFD are consistent with Almeida and Philippon (2006), who

discount Andrade and Kaplan’s estimates of ex-post CFD using risk-neutral probabilities

of default in a multi-period setting. They find that for investment-grade firms (with typical

leverage ratios up to 0.3), CFD are between 0.2% and 6.3% of firm value and can rise up

to 13.3% for a B-rated firm (which corresponds to a typical leverage ratio of 0.42).

If the model is well-specified, the intercept term, θ0, equals zero: when the firm has no

debt (Lit = 0), tax benefits and costs of financial distress are zero (Cit = 0). The intercept

θ0 is close to zero, although it tends to be on the negative side. This result suggests that

the specification of CFD can be improved upon.

15A related conjecture, which is not tested here, is that firms with higher potential CFD are more likely

to file for bankruptcy earlier in their decline, precisely to avoid the high CFD.
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5.2 The Cross-section of CFD

At the same leverage ratios, tables VI-IX show that the estimated ex-ante costs of finan-

cial distress are different across industries. This implies that some industries have higher

potential CFD than others, as captured by the parameter θ2.
16 In this section I study the

industry characteristics that make firms more or less sensitive to losing value when they

enter financial distress.

Strebulaev (2006) shows that the traditional regressions of observed capital structure on

industry characteristics can reject the Trade-Off theory when there are adjustment costs.

An advantage of the methodology in this paper is that regressing the model parameters on

industry characteristics does not suffer from this problem. The model parameters capture

the optimal leverage ratio and are not affected by firms’ temporary deviations from the

optimum.

Shleifer and Vishny (1992) argue that distressed firms may be forced to sell assets at

below-market values because it is likely that their competitors, the prime candidates to

buy the assets, are also distressed or bankrupt. This is especially true for intangible assets,

which are not easily sold to others outside of the industry e.g. brand names, franchises,

patents and client lists. The regression results in the first column of table XI show that

industries with high levels of intangibles relative to the book value of assets (value-weighted

across all industry constituents in Compustat) tend to have higher θ2. The regression

coefficient is significant at the 1% level. A one-standard-deviation increase in intangibles

(as a fraction of book assets) increases θ2 by 0.28. Moreover, the regression coefficient

on intangible assets becomes larger as industry profitability (defined as value-weighted

EBITDA divided by sales) declines. The negative interaction between intangibles and

profitability is not statistically significant, but does have a large effect on the relation

between intangibles and CFD: a one-standard deviation decrease in profitability increases

the coefficient on intangibles by 1. This evidence is consistent with Shleifer and Vishny

(1992) and shows that firms with many intangible assets lose value when distressed while

industry performance is poor, and consequently have high ex-ante CFD.

16Observed CFD show much less variation across industries because firms in industries with high potential

CFD choose lower leverage ratios. This issue is analyzed in more detail in the next section.
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Theory predicts that firms with high growth opportunities will be prone to under-

investment problems when they become distressed, due to a debt overhang problem (Myers,

1977). Shareholders are unwilling to fund new projects because most of the gains will go to

bondholders, and bond covenants usually prohibit the firm from raising new, more senior

debt. I consider two industry measures of growth opportunities: research and development

(R&D) expense relative to book value of total sales and the market-to-book ratio (M/B).

Both measures are value-weighted over all industry constituents in Compustat. Columns

3 and 4 of table XI show that both R&D-to-Sales and M/B are positively related to θ2,

with R&D-to-Sales significant at the 5% level. A one-standard-deviation increase in R&D-

to-Sales is associated with an increase in θ2 of 0.2. The results confirm that CFD for

firms industries with high growth opportunities increase faster and grow larger than in

industries with few investment opportunities. There is a positive interaction of both R&D

and M/B with industry profitability (not reported), suggesting that it is worse foregoing

investment opportunities when competitors are doing well, but the effect is both statistically

and economically insignificant. Foregoing growth opportunities is bad whether or not

competitors are distressed.

If a distressed firm relies on specialized human capital, it is susceptible to employees

either leaving the firm or spending their time updating resumes and looking for another

job, causing the firm to lose value. Berk et al. (2006) argue that human capital risk can

be as important as taxes in determining optimal capital structure. Taking labor expense

relative to sales as a proxy for the degree to which an industry relies on human capital

shows that industries with high human capital also tend to have higher potential CFD,

although the regression coefficient in table XI is not statistically significant. Still, a one-

standard-deviation change in the labor expense to sales ratio leads to an increase in θ2 of

0.1, which is equivalent to a 10% increase in ex-post CFD if the firm files for bankruptcy

when equity becomes worthless, and a 0.9% increase in ex-ante CFD at a leverage ratio of

0.3. This finding is robust to defining labor expense relative to cost of goods sold instead

of sales.

Industries that produce durable goods such as machinery and cars face the problem

that customers and suppliers grow concerned about the continuity of service, warranty
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and parts delivery when firms approach default (Titman, 1984). If customers are wary

of conducting business with a firm that may not be around a few months later, financial

distress is especially costly and will drive the company to bankruptcy quickly. Firms

that provide services with a strong client-supplier relationship, such as custom computer

programming, are also likely to suffer an impaired ability to conduct business when close

to bankruptcy.17 I define a dummy variable that equals 1 for industries that produce

machinery and equipment (SIC 35-39) and another dummy for non-financial, long-term

relationship-based services (advertising, security, computer programming, data processing

and healthcare (SIC 73 and 80)). The regression results show that the machinery and

equipment producers have CFD at default that are 23.5% higher than other firms, although

the coefficient is not statistically significant.18 The relationship services industries have

slightly lower (but insignificant) CFD. The latter result may be due to existing customers

being ”locked in” to the relationship so that even though firms may not gain new customers,

it will not lose its existing customers either. The magnitude of these coefficients is not

diminished when controlling for intangibles, research and development, market-to-book

ratio and labor expense. Note that after controlling for these factors, financial firms (SIC

60-69) do not have CFD that are different from other industries. Titman and Wessels

(1988) argue that R&D plus advertising expense relative to sales also serves as a measure

of product uniqueness, which has similar effects in distress as the industries described above.

Including advertising expense in the measure for R&D gives similar results to R&D-to-Sales

as shown in table XI.

A regression of θ2 on liquidity in the equity market (the average number of shares traded

monthly relative to shares outstanding) and the log of book assets reveals evidence that

firms that are easier to refinance have slightly lower CFD. I use liquidity as a proxy for

ease of refinancing, after controlling for size, because more liquid firms tend to be more

transparent. When information between investors is less asymmetric, less time is spent in

17A strong client-supplier relationship in services can come from a fixed cost to learning about the clients’

needs or systems in place, client or supplier-specific investments, or any other feature that makes switching

suppliers costly.
18A previous version of the paper also included the car industry (SIC 37) and found large potential CFD,

in between the Electric Equipment (SIC 36) and Instruments (SIC 38) industries.
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acquiring and checking information, and agency problems (such as stalling and haggling by

interested parties) are less severe in a distressed refinancing. The percentage of debt that

is held by banks (controlling for firm size) is negatively related to θ2 but very insignificant

(result not shown). The average number of debt issues outstanding (controlling for size)

is negatively related to CFD, contrary to what one would expect, but also statistically

and economically insignificant. It appears that coordination problems in restructuring and

refinancing a distressed company have a limited impact on ex-ante CFD.

The negative (but insignificant) coefficient on size suggests a fixed cost effect in CFD,

consistent with findings by Andrade and Kaplan (1998). Industries in which firms are on

average large tend to have lower CFD as a fraction of firm value, although the coefficient

is not statistically significant.

The publishing industry (SIC 27) has very high intangibles but eliminating it from the

regressions does not change the conclusions, although the results are slightly less significant.

Using equally-weighted instead of value-weighted industry measures has no notable effect

on the results.

Changing the dependent variable to the posterior mean of θ2, estimated using the credit

spread of the safest bonds (instead of the unobserved face value) to proxy for the market

value of unobserved debt, produces results that are very close in significance and magnitude

to the regressions in table XI. Running the same regressions on the measure of ex-post

CFD, θ1+θ2, gives near identical results to table XI, with the exception that the coefficients

on market-to-book and machinery and equipment producers both become significant at the

10% level.

The results in this section show that growth opportunities and intangibility of assets,

particularly if paired with poor industry performance, are the most important determinants

of ex-ante CFD. The impaired ability to do business in distress is most costly to firms

that produce durable and unique goods that require significant post-sales parts or service.

Long-term, relationship-based services and financial firms are not more prone to suffering

CFD. Costs of financial distress are slightly larger when the firm relies on human capital,

although the economic magnitude is limited. The importance of coordination problems in

a distressed refinancing or restructuring is small. There is some evidence of a fixed cost
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effect to CFD. The results also support the model insofar that the parameter estimates

capture the factors that the literature identifies as important drivers of CFD.

5.3 Optimal Capital Structure

I test the Trade-Off theory of optimal capital structure in two ways. First, I regress

observed industry leverage on the estimated model parameters, and second, I calculate

credible intervals for optimal debt-to-assets ratios implied by the model’s estimates and

compare these to observed leverage ratios for each industry in the sample.

Regressions of observed leverage on the model parameters reveal whether cross-sectional

differences in tax benefits and CFD have any effect on the industry’s observed capital

structure. If the Trade-Off theory holds, an increase in tax benefits (a decrease in θ1)

results in an increase in optimal leverage. This implies a negative coefficient on θ1. An

increase in CFD (an increase in θ2) lowers the optimal leverage ratio so that θ2 also has a

negative sign. The regression of industry leverage (aggregate book debt over all industry

constituents in Compustat divided by aggregate book debt plus market value of equity)

on θ1 and θ2 in table XII shows that both parameters have a negative coefficient and are

significant at the 5% level, consistent with the Trade-Off theory.

Economically, the impact of θ1 on leverage is limited: an increase in the marginal tax

rate of 10% (a decrease in θ1 of 0.1) raises the observed leverage ratio by 0.054. This result

suggests that it is difficult to empirically verify the effect of taxes on capital structure.

The economic effect of θ2 on observed leverage is much stronger than θ1. The difference

in θ2 between the median industry and the industry on the third quartile is 0.36. The

regression result implies that the latter industry has a leverage ratio that is a standard

deviation (0.13) lower than the median firm.

A more powerful test of the Trade-Off theory is to regress observed leverage ratios on the

exact prediction for optimal leverage implied by the model. The specification of CFD net

of tax benefits as a quadratic function of leverage has a clear prediction about the leverage

ratio that firms should optimally adopt. The optimal capital structure is the debt-to-assets
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ratio L∗ that minimizes the costs of financial distress, net of tax benefits:

L∗ = − θ1

2θ2

(18)

Note that since the model estimates CFD net of taxes, there is no need to separate the

tax benefits from the costs of financial distress in order to compute the optimal capital

structure.

If companies choose their capital structures according to the model, a regression of

observed leverage on the estimate of θ1/θ2 should yield an intercept of zero and a coefficient

of -0.5, according to equation (18). Table XII shows that 44% of the variation in value-

weighted debt-to-assets across industries can be explained by the posterior mean of θ1/θ2

alone.19 The hypotheses that the coefficient is equal to -0.5 and that the intercept equals

zero both have to be rejected at the 5% level (but not at the 1% level). This result suggests

that industries tend to be over-levered relative to the model-implied optimum. Forcing

the intercept to be zero by omitting it from the regression yields a coefficient on θ1/θ2 of

-0.462, which is statistically not significantly different from -0.5. The explanatory power

of θ1/θ2 is robust to controlling for other factors that are traditionally used to proxy for

CFD, such as intangibles, profitability and market-to-book ratios (see Harris and Raviv,

1991, for a summary). When considered separately, θ1/θ2 and M/B do equally well in

explaining the cross-section of observed leverage ratios. In a regression that includes both

θ1/θ2 and M/B (specification VI in table XII), both are statistically significant. This could

be interpreted as θ1/θ2 explaining the component of observed leverage that is related to

optimal leverage ratio, and M/B capturing departures from the optimal leverage ratio due

to past performance (Welch, 2004) or market timing (Baker and Wurgler, 2000).

The regression results are nearly identical when using equally-weighted measures of

industry leverage and explanatory variables, as well as using book measures of leverage and

netting out cash from debt values. Using interest coverage (defined as average EBITDA

divided by interest expense, value-weighted by industry) as a measure of leverage also yields

the right and significant signs on θ1, θ2 and θ1/θ2, but when controlling for other variables

the explanatory power of θ1/θ2 disappears.

19The posterior mean of θ1/θ2 is different from the posterior mean of θ1 divided by the posterior mean

of θ2, by Jensen’s inequality.
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Using the model parameters estimated with the credit spread of firms’ safest bonds

as a proxy for the market value of unobserved debt has little effect on the magnitude or

significance of the regression results (not reported). The two noticeable differences are that

the coefficient on θ2 in model I of the interest coverage regression becomes significant at

the 5% level, and the coefficient on θ1/θ2 in model II of the interest coverage regression

becomes significant at the 1% level, although it is still insignificant when controlling for

other variables.

From the posterior distribution of optimal leverage one can analyze for which industries

the observed leverage ratio was significantly different from the optimum over the sample

period. The posterior distributions of θ1 and θ2 and equation (18) are used to calculate

the posterior distribution of model-implied optimal debt-to-assets ratio for each industry

separately. Whenever draws for θ1 are positive or draws for θ2 are negative, implying a

negative leverage ratio, I set the leverage ratio to zero. Similarly, when I have draws from

the joint distribution for which −θ1 > 2θ2 so that predicted leverage is larger than 1, I set

leverage to 1.

The box-plots in figures 3 and 4 show that for most industries the model has a strong

prediction of what optimal leverage should be, as evidenced by a tight distribution of model-

implied leverage ratios. The box-plots also show the observed value-weighted leverage in

industries over the sample period. For most industries, the observed industry leverage is

close to the model’s predictions. Most importantly, not many industries are underlevered

compared to the model’s predictions, especially when considering the estimates obtained

using the credit spread of the safest bonds as a proxy for market value of unobserved debt

(in figure 4).

There are three industries for which the observed leverage ratio is considerably different

from model-implied leverage: Airlines (SIC 45), Utilities (SIC 49) and Patents & Royalities

(SIC 67). The airline industry experiences bankruptcies with high frequency, especially

after 2001, and it is not surprising that observed leverage is higher than optimal. The

sample on which parameters are estimated contains the bankruptcy of U.S. Airways in 2002

(and again in 2004) and ATA in 2004. During the 1994-1997 period, the value-weighted

leverage for the airline industry was 0.27, right around the model-implied optimum. Airlines
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that performed well over the sample period, such as Southwest Airlines, had even lower

leverage ratios of around 0.10-0.15.

Utilities and Patent & Royalties firms usually have very stable cash flows and can lever

up considerably. The predicted optimal debt-to-assets ratios are rather low at 0.2 and 0.25,

respectively. Even though my sample does contain bankruptcies in both industries, it does

not appear that these industries as a whole were distressed over the sample period.

There may be some concern that the results on optimal leverage are somehow driven by

the estimation methodology. Even though optimality of capital structure is not assumed

or in any way used in the estimation, observed leverage ratios are used to estimate the

model and possibly the estimation somehow ”locks on” to observed levels of leverage.

However, observed leverage ratios in the sample (see table III) are generally different from

the leverage ratios observed for the entire industry that are used in this section. For

example, the non-durable wholesale industry (SIC 51) has a leverage ratio in the sample

of 0.45 but the model estimates predict optimal leverage to be between 0.18 and 0.28. The

entire industry had a leverage ratio of 0.22 over the sample period, showing that the model

produces estimates that imply that the entire industry is levered optimally even though the

sample firms used for estimation are not. There are no counter-examples where the sample

leverage corresponds with model-implied optimal leverage but industry leverage is vastly

different. Moreover, simulation results (see appendix C) show that firms in the industry

can have random leverage ratios over the sample period and the estimation algorithm still

recovers the true parameter values and hence, estimates the right optimal leverage ratio.20

As a final exercise I estimate the model’s implications for adjustment costs. If firms

readjust their capital structure when the gain in firm value outweighs adjustment costs then

the observed variation in leverage should be consistent with the size of adjustment costs.

Table XIII shows the gain of adjusting leverage as implied by the model and adjustment

costs calculated using fees equal to 3% of issue size. The gain of adjusting leverage is

calculated as the reduction in Ct/V
L
t if firms lever back up to the optimum once Lit hits

the 5th percentile of the industry distribution. The 3% adjustment cost of a debt issue and

20Unreported simulations deliberately start all firms in the industry at leverage ratios that are too high

or too low compared to the true optimum and rebalances leverage to stay in the same, sub-optimal region.

The methodology still estimates the correct parameter values.
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share repurchase is based on 1.1% and 5.4% average issuance cost (relative to issue size) for

debt and equity issues, respectively (Altinkilic and Hansen, 2000). The gain of relevering

is 1.5% of firm value on average (median 0.7%), compared to adjustment costs of 0.6%.

The gain in firm value when firms are assumed to lever down at the 95th percentile

are as large as 10%. However, companies that are extremely highly levered tend to be

economically and financially distressed, and agency costs due to information asymmetries

and coordination problems add to the costs of readjusting capital structure (Gilson, 1997).

The potential gain in firm value can therefore far outweigh the direct issuance costs without

firms levering down (see Haugen and Senbet, 1978, 1988, and Fama, 1980, for a treatment

of this issue). This is not an issue at the low-leverage levels reported in table XIII. Still,

there is a statistically significantly negative relation between θ2 and the 95% upper bound

of observed leverage ratios within industries. This evidence shows that firms in industries

with high potential CFD unlever sooner due to the rising CFD, compared to firms in

low-CFD industries.

The results in this section show evidence in favor of the Trade-Off theory of optimal

capital structure with adjustment costs. The model for CFD net of taxes explains much of

the variation in capital structure across industries even in the presence of variables com-

monly used to explain the cross-section of capital structures. Finally, the model suggests

that the under-leverage puzzle is not as severe as usually thought, at least for firms with

publicly traded debt.

6 Conclusions

Costs of financial distress can be identified from the market values and betas of corporate

debt and equity. Two identification assumptions are necessary: i) firms within an industry

have the same (unlevered) asset beta, and; ii) the ex-ante costs of financial distress net of

tax benefits are a function of observable variables.

I estimate a model in which the costs of financial distress net of tax benefits are a

quadratic function of leverage, with different parameters for each industry. I present two

sets of estimates that provide upper and lower bounds on the costs of financial distress,
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using different assumptions regarding the market value of unobserved bank debt and the

present value of tax benefits. For observed levels of leverage over the 1994-2004 sample

period, average ex-ante CFD are 4% of firm value, and do not exceed 11% for any industry.

If firms file for bankruptcy when equity is worthless, CFD at bankruptcy are 31% of firm

value on average. For more realistic levels of leverage at default, CFD are 13-26% of firm

value at bankruptcy. These results are largely consistent with previous studies of costs of

financial distress.

The potential costs of financial distress that a firm suffers as it approaches default

increase with industry measures of growth opportunities, the intangibility of assets and

the importance of post-sales service, warranty and parts. There is little evidence that the

degree of (specialized) human capital and capital structure complexity have an effect on

CFD. The empirical evidence is consistent with under-investment problems, the risk of asset

fire-sales and concerns of lost business due to financial distress being important drivers of

costs of financial distress, whereas reliance on human capital and ease of refinancing seem

to bear little effect on CFD.

Comparing model-implied optimal leverage with observed leverage ratios reveals that

most industries are close to optimally levered over the 1994-2004 sample period. The

Airlines, Utilities and Patent & Royalty industries are over-levered relative to the model’s

predictions, but no industry is significantly under-levered. An omitted variables problem

in the specification for CFD will only make this result stronger. The under-leverage puzzle

is therefore not confirmed at the industry level, although the results cannot explain why

some firms refuse to take on any debt at all (e.g. Microsoft).

At the minimum, the empirical results show that the methodology presented in the

paper is a useful tool to estimate CFD on large datasets, and the relatively simple model

gives encouraging results for future research. The empirical results validate the approach

to the extent that the parameter estimates capture the factors that the literature iden-

tifies as important drivers of CFD, and the model explains a significant fraction of the

cross-sectional variation in leverage ratios. The empirical model can be substantially gen-

eralized by including other proxies for the probability of default besides leverage, such as

Z-scores and credit ratings. The variables that were found to drive CFD across industries
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can also be used to explain within-industry differences, as well as time-variation in CFD.

Other interesting avenues are to include past firm performance, performance relative to

competitors, and macro-economic determinants of CFD not explored in this paper.
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Appendix A: Proofs

Proof. The relation between a firm’s betas when there are CFD.

Take first differences of V U
t − Ct = Dt + Et and rewrite:

(
V U

t+1 − Ct+1

)− (
V U

t − Ct

)
= (Dt+1 + Et+1)− (Dt + Et)

⇔ (
V U

t+1 − V U
t

)− (Ct+1 − Ct) = (Dt+1 −Dt) + (Et+1 − Et)

⇔ V U
t · V U

t+1 − V U
t

V U
t

− Ct · Ct+1 − Ct

Ct

= Dt · Dt+1 −Dt

Dt

+ Et · Et+1 − Et

Et

⇔ V U
t · rU

t+1 − Ct · rC
t+1 = Dt · rD

t+1 + Et · rE
t+1

⇔ V U
t ·

(
rU
t+1 − rf

t+1

)
− Ct ·

(
rC
t+1 − rf

t+1

)
= Dt ·

(
rD
t+1 − rf

t+1

)
+ Et ·

(
rE
t+1 − rf

t+1

)

where the last equation is obtained by subtracting V L
t · rf

t+1 from both sides, where rf
t+1

is the risk-free rate that applies from time t to t+1 and V L
t = Dt + Et is the value of the

levered firm. Note that the last equation holds both for total returns (including payouts

such as dividends and interest), and for returns net of payouts (capital gains only). Now

take conditional betas with respect to some portfolio’s excess return:

V U
t · βU

t − Ct · βC
t = Dt · βD

t + Et · βE
t

Divide this last equation by V L
t on both sides to obtain equation (6).

Proof. Ct

V L
t

βC
t = (θ0 + θ1 + θ2(2Lt − L2

t )) · Dt

V L
t
· βD

t + (θ0 − θ2L
2
t ) · Et

V L
t
· βE

t

Start with the specification Ct = (θ0 + θ1Lt + θ2L
2
t ) V L

t , with Lt ≡ Dt/V
L
t . Perform a

first-order Taylor expansion of Ct around (Dt, Et):

Ct+1 − Ct ≈ ∂Ct

∂Dt

· (Dt+1 −Dt) +
∂Ct

∂Et

· (Et+1 − Et)

⇔ Ct · Ct+1 − Ct

Ct

≈ ∂Ct

∂Dt

·Dt · Dt+1 −Dt

Dt

+
∂Ct

∂Et

· Et · Et+1 − Et

Et

⇔ Ct · rC
t+1 ≈ ∂Ct

∂Dt

·Dt · rD
t+1 +

∂Ct

∂Et

· Et · rE
t+1

Take the conditional covariance with the excess return to the risk factor from time t to
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t+1, rM
t+1 − rf

t+1, on both sides:

Ct · Covt

(
rC
t+1, r

M
t+1 − rf

t+1

)
≈ ∂Ct

∂Dt

·Dt · Covt

(
rD
t+1, r

M
t+1 − rf

t+1

)

+
∂Ct

∂Et

· Et · Covt

(
rE
t+1, r

M
t+1 − rf

t+1

)

⇔ Ct

V L
t

βC
t ≈ ∂Ct

∂Dt

· Dt

V L
t

· βD
t +

∂Ct

∂Et

· Et

V L
t

· βE
t

To get the last equality, divide both sides by V art(r
M
t+1−rf

t+1) and V L
t . Note that the betas

here are betas on plain (not excess) returns. Subtracting the risk-free rate from rC
t+1 is not

equivalent with subtracting the risk-free rate from both rD
t+1 and rE

t+1, but this is not a big

issue given the small effect of using plain versus excess returns when estimating debt and

equity betas. Alternatively, it is possible to estimate the model on plain (instead of excess)

returns, since the other model equations hold both for plain and excess returns.

Plugging the derivatives ∂Ct

∂Dt
= θ0 + θ1 + θ2(2Lt − L2

t ) and ∂Ct

∂Et
= θ0 − θ2L

2
t into the

equation completes the proof. Note that the error term ut in (16) will show up in the

partial derivatives, but since it is by assumption independent of Lt, the additional error

term that shows up in Ct/V
L
t · βC

t is also uncorrelated with leverage. Combining the

resulting expression with (6) yields (14).
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Appendix B: MCMC Algorithm

For a general description of Markov Chain Monte Carlo (MCMC) methods, see section

3 in the main text. Details can be found in Gelfand and Smith (1990), Robert and Cassella

(1999), and in particular for financial economics in Johannes and Polson (2004).

The algorithm estimates the model in (13)-(15) by sampling from the posterior distri-

bution of model parameters, betas and (unobserved) unlevered asset values conditional on

observed debt and equity values, by following four main steps:

1. Draw the model parameters given the betas and values

2. Draw the betas, given values and the new parameters

3. Draw values (including simulating missing debt data), given the new betas and pa-

rameters.

4. Go back to step 1, using the new values and betas.

After a number of runs known as the ”burn-in” phase, this algorithm converges to a sta-

tionary chain. This usually takes only 20-30 steps, but to be sure I let it go for 100 cycles.

At this point I let the alhortihm run for another 5,000 cycles (1,000 for the simulation

study). These samples constitute random draws from the posterior distribution. From

here it is easy to compute descriptive statistics on the parameters of interest (θ0-θ2), such

as calculating (posterior) means and standard deviations.

To initialize the algorithm, let the θ’s equal zero so that V U
it = Dit + Eit for all i and t.

The betas are initialized from 24-month rolling regressions. Then go to step 1 and let the

procedure do the work. Let’s consider each step in detail.
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Step 1: Draw the model parameters given the betas and values

Break this step up in 3 substeps:

Step 1A: Draw φ0, φ1 and H, given the betas

Imposing an AR(1) on all betas, estimate the parameters using a Bayesian Seemingly

Unrelated Regression (see Zellner, 1971, p.240-243):




yU

yE
1

yD
1

...

yE
N

yD
N




=




XU

XE
1

XD
1

. . .

XE
N

XD
N




·




ΦU

ΦE
1

ΦD
1
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ΦE
N

ΦD
N




+




ηU
1

ηE
1

ηD
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...

ηE
N

ηD
N




where

yU =




βU
2

...

βU
T


 , XU =




1 βU
1

...
...

1 βU
T−1


 , ΦU =


 φU

0

φU
1


 , E(η · η′) = H ⊗ IT−1

and analogous definitions for equity and debt betas of firm i = 1 . . . N (yE
i , XE

i , ΦE
i

and yD
i , XD

i , ΦD
i ). The error structure implies that the errors are i.i.d. over time but

contemporaneously correlated, with covariance matrix H. Using a diffuse prior p(Φ, H−1) ∝
|H−1|−(N+1), the posterior distributions is:

Φ|H−1, y, X ∼ N
[
(X ′(H−1 ⊗ IT−1)X)−1 ·X ′(H−1 ⊗ IT−1)y, (X ′(H−1 ⊗ IT−1)X)−1

]

H|Φ, y, X ∼ IW (A , T − 1 , 2N + 1)

where IW stands for Inverse Wishart with characteristic matrix A and T-1 degrees of

freedom. The matrix A is the symmetric, 2N+1 by 2N+1 dimensional matrix with sums

of products of the residuals of the individual regressions as the elements (see Zellner, 1971,

p.241).

Given the previous sample (Φ(g), H(g), β(g)), first draw Φ(g+1)|H(g), y(g), X(g) from the

Multivariate Normal distribution, and then H(g+1)|Φ(g+1), y(g), X(g) from the above Inverse

Wishart.
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Step 1B: Draw the α’s and Σ, given the betas and values

The return regression equations can be used to estimate the intercepts α and the co-

variance matrix of idiosyncratic noise Σ, including the covariances with vit. This is done

using a Bayesian multivariate regression (Zellner, 1971, p.224-228):

[ y1 y2 . . . yN ] = 1T−1 · [ α1 α2 . . . αN ] + [ e1 e2 . . . eN ]

where 1T−1 is a column vector of length T-1, filled with ones, and the 1-by-4 row vector

αi = [ αU
i αE

i αD
i 0 ]. Furthermore:

yi =
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 , E(e′ × e) = Σ

defining D∗
it ≡ Dit[1 + θ0 + θ1 + θ2(2Lit − L2

it)] and E∗
it ≡ Eit[1 + θ0 − θ2L

2
it]. Returns from

time t-1 to t, in excess of the risk-free rate, are denoted by r̃it.

Using the diffuse prior p(α, Σ) ∝ |Σ|−(4N+1)/2, the α’s are distributed Multivariate

Normal, conditional on Σ and the data:

α|Σ, y ∼ N( 1′T−1 · y/(T − 1) , Σ/(T − 1) )

Not surprisingly, this is basically the distribution of a sample average. The posterior of Σ

is an Inverse Wishart distribution:

Σ|y ∼ IW (A , T − 2 , 4N)

where A is the 4N-by-4N matrix containing the sums of products of the OLS residuals

from the individual regressions. The strategy then is to first draw Σ(g+1)|y(g), and then

α(g+1)|Σ(g+1), y(g).
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Step 1C: Draw θ’s, R, S, and Q, given the betas and values

Another Bayesian regression provides the posterior distributions of the θ’s, and the

covariance matrices R, S, and Q:
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Using a similar diffuse prior as before, p(Θ,W ) ∝ |W |−(2NT+1)/2, the posteriors are:

Θ|W, y,X ∼ N
[
(X ′(W−1 ⊗ IT )X)−1 ·X ′(W−1 ⊗ IT )y, (X ′(W−1 ⊗ IT )X)−1

]

W |Θ, y, X ∼ IW (A, T, 2N)

where A is calculated as before. First sample Θ(g+1)|W (g), y(g), X(g) from the Multivariate

Normal and then use the Inverse Wishart to draw from W (g+1)|Θ(g+1), y(g), X(g).
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Step 2: Draw the betas, given values and parameters

This step requires two sub-steps: i) Use the Kalman filter to get the distribution of the

betas at each time t, given the values up to time t, and; ii) sample backwards to get a

draw from the distribution of the betas given all values from time 1 to T. This procedure

is called Forward Filter Backward Sample (FFBS) and is described in detail in Carter and

Kohn (1994).

For the Kalman filter, the state diffusion is:
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and the observation equations:
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where D∗
it and E∗

it are as defined in step 1B. Given the estimated parameters and the

covariance matrices H(g+1) from step 1A and Σ(g+1) from 1B, this is a straightforward

application of the Kalman Filter. The Backward Sample step is described in detail in

Carter and Kohn (1994).
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Step 3: Draw values, given the betas and parameters

Obtaining a sample of the unlevered asset values for all firms and time periods requires

another application of FFBS. The state diffusion is:
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Conditional on the parameter estimates and the covariance matrices Σ(g+1) and W (g+1),

Kalman filter the unlevered asset values and then sample backward as in Carter and Kohn

(1994).

In case there is missing debt data, simulate the missing values in every cycle of the

algorithm. First group together the bonds of each single firm that are of equal security

and seniority, and have maturities within 2 years of each other. Assume that the bonds

within each group have the same market-to-book ratio, calculate the value of the other

bonds in the group from an observed trade in one of the bonds. To fill in the gaps for each

group, use FFBS to draw missing values from the market model. In the simulation study

there is effectively only one group of bonds, so that either all bond values are observed or

completely missing. The estimation strategy is the same as above.21

21Ideally, one would treat each bond issue separately so that in estimation each individual bond’s beta is

estimated and used to generate the missing values. Although in theory this is not a problem to implement,

the multitude of bond issues per firm and computing power constraints makes this approach infeasible.
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Appendix C: Simulation and Robustness

Simulations are a useful tool to validate the performance of an estimation algorithm

and to judge the sensitivity of the results to key assumptions. Specifically, I look at the

effects of infrequent bond trading, unobserved bank debt and different unlevered betas

across firms on the bias and standard errors of the results.

The first issue, infrequent trading of corporate bonds, results in more noisy estimation

of debt betas and larger standard errors of parameter estimates, but does not lead to

inconsistent estimators. The second issue, the fact that the market value of bank debt is

never observed, creates a modest bias in the estimates. Under the working assumption

that bank debt always trades at face value, costs of financial distress are underestimated.

The reason is that when the firm approaches default, book values of bank debt overstate

the value of the firm and understate its riskiness i.e. the firm is measured to be too safe so

that costs of financial distress are under-estimated. The opposite happens when bank debt

is assumed to have the same credit risk as publicly traded bonds. Finally, the assumption

that the unlevered asset beta is the same for all firms within the same industry may be

wrong. If firms with high financial leverage in fact have low unlevered asset betas, then the

estimated costs of financial distress are biased downwards. The estimated common asset

beta is too high for highly levered firms so that the difference between the observed levered

firm beta, βL
t , and unlevered asset beta is too low.

The simulation is set up as follows. There are 4 firms in the industry, of random initial

size and financial leverage.22 Debt and equity market values for the first month are drawn

at random from a uniform distribution between 0 and 100. The unlevered firm value is

then determined from the value equation (13):

V U
it = V L

it · (1 + θ0 + θ1Lit + θ2L
2
it + uit) (19)

for each firm i = 1 . . . 4. The simulation parameters are summarized in table XIV. The

parameter θ0 equals 0 so that costs of financial distress are zero when there is no debt in

the capital structure of the firm. The negative of the marginal tax rate, θ1, is chosen to be

22At the minimum 2 firms are needed to identify the model (see section 2). I checked this condition in

the simulations: when estimating the model on a time series for one firm, the estimation produces random

numbers. With 2 or more firms, it clearly converges to the correct parameter values.
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−0.2 and the CFD parameter θ2 is set equal to 0.3. These numbers imply a marginal tax

rate (including disciplinary benefits of taking on debt) of 20% and an optimal leverage ratio

L∗ = 0.2/(2 · 0.3) = 0.33. The latter is close to the observed level of financial leverage of

0.31 in the empirical data (see table III). The noise component uit follows an i.i.d. Normal

distribution with mean zero and variance R = 0.0052. Since CFD are -3.3% of firm value

at the minimum and 10% at the maximum, a standard deviation of uit of 0.5% is quite

substantial. For simplicity uit is drawn independent from ujt for i 6= j, even though the

estimation algorithm allows the error to be correlated across firms.

Companies’ common (unlevered) asset beta equals 1 for the first month and progresses

according to an AR(1) process with intercept 0.02 and autoregressive coefficient 0.98. The

noise component is distributed Normal with mean zero and monthly standard deviation

0.01. This implies that asset betas are highly autocorrelated with a long-run mean of 1, and

are not very volatile. Given the unlevered asset beta and current values of debt, equity and

unlevered assets, we can calculate the debt and equity betas that drive expected returns

over the next month:

βD
it = 1.3 · βU

t · (Lit)
5 (20)

βE
it =

V U
it · βU

t − V L
it · vit − [1 + θ0 + θ1 + θ2(2Lit − L2

it)] Dit · βD
it

Eit [1 + θ0 − θ2L2
it]

(21)

The debt beta will be close to zero for low levels of financial leverage and rises exponentially

to equal the asset beta at default (when leverage is 1). The asset beta at default is assumed

to be 30% higher than the unlevered asset beta.23 The equity beta is calculated by rewriting

equation (14), including the error term vit to reflect that the beta relation is subject to

noise. The error vit is distributed i.i.d. Normal with zero mean and variance S = 0.052, and

is independent across firms (although the estimation allows for cross-sectional dependence).

The errors uit and vit are assumed to have a correlation coefficient of ρ = 0.1 for the same

firm (this is a representative number for the estimates from the real data).

Using the values and betas of debt and equity in a particular month, I compute values

for the next month by drawing debt and equity returns from the CAPM. The expected

23The theory only states how levered firm beta changes as a function of leverage, but not the individual

debt and equity betas. Therefore I can specify my own functions for debt and equity betas, as long as the

relation (6) holds in expectation. It is not necessary to know these processes for estimation.
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annual excess return on the market portfolio is 7%, with a standard deviation of 15%. The

idiosyncratic shock to debt and equity returns is distributed multivariate Normal with mean

zero and annual standard deviation of 10% for equity and 5% for debt, with correlation

coefficient 0.3. This results in realistic levels of return volatilities: for a firm with a beta

equal to 1, annual return volatility is about 25%. With betas rising to 2 or 3 when leverage

ratios go up, return volatility can easily exceed 50% per year. For simplicity, I assume that

idiosyncratic returns are uncorrelated across firms, although this is not required for the

estimation.

With next month’s debt and equity values, the new unlevered asset value and betas

are calculated as above. To generate a time series of debt and equity values that can be

used for estimation, I repeat this exercise as many times as desired. Consistent with the

empirical data, I simulate monthly data for 11 years, or 132 months.

Base Case: Perfectly Observed Debt

The simulation is repeated 100 times using the same parameters. Each run of the

simulation represents a different observed dataset of a 4-firm industry over 11 years. The

simulated monthly debt and equity values are used as input for the estimation algorithm

described in section 3. The algorithm is initialized the same way as in the empirical

application: start with all θ’s equal to zero and use 24-month rolling regressions to initialize

the debt and equity betas (see also appendix B). Although the algorithm usually ”burns in”

in around 20 cycles, I discard the first 100, and use another 1,000 cycles for each estimation.

Table XV panel A shows the estimation results when the market value of corporate debt

is observed without bias. The posterior mean estimates are close to the true values, and

the standard deviation of the posterior distribution is generally quite small. For example,

using the posterior mean as the point estimate for θ2 we find that over the 100 sample

datasets, the estimate averages to 0.285 with a standard deviation of 0.020. The posterior

standard deviation is 0.038, on average. As can be expected, for 4 out of 100 datasets the

(2.5%, 97.5%) credible interval for θ2 does not contain the true value of 0.3.

The fact that we do not observe Cit adds substantial noise to the estimates: if one

could observe CFD directly and regress Cit/V
L
it on leverage, we would estimate θ2 with a

standard error of 0.005, compared to the posterior standard deviation of 0.038 from the
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MCMC estimation. Still, the estimates are tight enough to be meaningful. For example,

the (2.5%, 97.5%) credible interval for implied optimal financial leverage is between 0.326

and 0.372, on average across datasets.

Note that equations (20)-(21) imply that using an AR(1) process on the debt and equity

betas in the estimation is misspecified. However, since the expected change in leverage is

usually small it does not materially affect the results. Other specifications that make the

time series process of the debt and equity betas dependent on leverage do not materially

change the results.

Finally, the algorithm works equally well for different values of the θ’s in simulation

(results not reported).

Missing Debt Data

To simulate the empirical issue of missing corporate debt data due to infrequent trading,

I drop half of the debt observations by imposing a 50% chance of observing the value of

corporate debt in each month. The months in which debt value is missing are different

for each dataset. The results in table XV panel B show that this issue does not bias

the estimates but the uncertainty about the unobserved values does increase the posterior

standard deviation. The variance of the estimates does not increase dramatically, due to

the fact that debt values and betas are quite stable over time so that the simulated missing

values are close to the true values.

Unobserved Bank Debt

A tricky issue is the fact that bank debt is generally unobserved and requires assump-

tions about its market value. One solution is to use the face value of bank debt as the

upper bound on its market value and the market-to-book ratio of traded bonds as the lower

bound. Since the mispricing that results from these assumptions is related to leverage, it

is likely that the estimates of costs of financial distress are biased. To simulate this issue,

I assume observations on D∗
it, which is related to the true market value of corporate debt,

Dit, as follows:

D∗
it = Dit · [1 + min(Lit − 0.5, 0)2] (22)

Debt values are observed correctly when leverage is below 0.5, but overstated up to 25%
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when leverage increases beyond 0.5. This is similar to using book values of bank debt

instead of market values.

Table XV panel C shows that indeed θ2 is underestimated, at 0.245 on average, but the

true value of 0.3 is still within two standard deviations of the mean. For firms with high

levels of financial leverage this can understate CFD by up to 4% of firm value relative to the

results in panels A and B. Still, this is relatively small compared to the 25% mispricing of

debt, partly because some of the mismeasurement is absorbed by the estimates of unlevered

firm value, V U
it , mitigating the bias in the parameters. If debt is undervalued by up to 25%

(as if applying credit spreads of corporate bonds to bank debt), θ2 is over-estimated at

similar magnitudes.

Finally, much of the bias results from the most extremely levered firms because their

debt is the most mismeasured. When I exclude those firm-months in which Lit > 0.9 the

bias virtually disappears (results not shown).

Different Unlevered Betas

The main identification assumption made in section 2 is that firms within the same

industry have the same unlevered asset beta. However, it may be the case that some

firms are more levered because they face lower business risk, i.e. the assumption that the

unlevered asset beta is the same for all firms within the industry may be wrong. This

problem could result in underestimation of the costs of financial distress because the asset

betas for highly levered firms are over-estimated.24 To check this I simulate data with

perfectly observed debt, but firms’ unlevered betas at time 0 depend on their financial

leverage:

βU
i0 = 1.2− Li0 ∗ 0.4 (23)

Firms with low financial leverage have asset betas close to 1.2 whereas firms with very

high leverage have asset betas close to 0.8. Table XV panel D shows that the estimates

are not biased, but the posterior standard deviation does increase relative to panel A. The

results appear quite robust to reasonable violations of assumption (A1), that unlevered

betas across firms within the same industry are equal.

24Alternatively, highly levered, distressed firms may have higher asset betas as their operating leverage

increases, resulting in overestimation of costs of financial distress.
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Table I

Sample Breakdown by Industry
Breakdown of the 1994-2004 sample of 244 U.S. firms into industries, by 2-digit SIC code. The
third column shows the average number of sample firms per year, and as a percentage of all
Compustat firms in the same industry in column four. Column five lists the average industry
equity market capitalization (in billions of dollars) in the sample, and as a percentage of total
market capitalization in the industry in column six. The final row shows the average number of
sample firms and average market capitalization per year, aggregated across all industries in the
sample. Source: FISD, CRSP, Compustat.

Industry 2-digit #firms market cap
SIC sample %total sample %total

Oil & Gas 13 7.45 3.58 27.57 11.30
Builders 15 2.09 4.51 1.38 6.11
Food 20 7.91 5.57 87.51 14.95
Paper 26 4.00 5.87 28.45 16.89
Publishing 27 4.00 4.81 12.78 10.61
Chemicals 28 22.45 4.28 567.41 30.57
Petroleum Products 29 3.73 9.30 9.02 1.00
Primary Metals 33 3.55 3.41 61.48 59.06
Machinery 35 8.27 2.03 57.62 6.74
Electric Equipment 36 13.09 2.51 95.55 8.46
Instruments 38 4.55 1.11 59.41 16.78
Transport (Air) 45 4.00 8.54 17.04 30.90
Telecom 48 13.36 4.30 145.97 7.94
Utilities 49 14.45 6.44 64.71 11.61
Wholesale (Non-durable) 51 6.82 7.13 24.86 27.07
Retail (Misc) 53 7.00 18.47 74.76 27.76
Banks 60 3.91 0.52 78.08 5.48
Insurance 63 5.91 2.97 32.60 3.97
Patent & Royalty 67 13.27 1.56 272.91 73.10
Hotels 70 2.45 7.71 2.00 5.00
Services - Equipment 73 14.00 1.60 103.47 9.51
Health 80 7.73 7.06 47.40 57.72
Total - 173.91 5.15 1871.97 20.11
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Table II

Corporate Bond Summary Statistics
Summary statistics on the corporate bonds of the 244 sample firms over 1994-2004. The third
column reports the average number of bond issues per sample firm. Column four and five show the
mean and standard deviation of the percentage of total book debt per firm-year that is observed
through the FISD (%observed). %traded is the percentage of months that corporate bond issues
are traded, weighted by bond issue face value. Column six and seven show the average and
standard deviation of %traded across firms in the industry. The final row reports the average
statistics across all industries. Source: FISD, Compustat.

Industry 2-digit bond issues %observed %traded
SIC per firm mean stdev mean stdev

Oil & Gas 13 12.97 69.30 25.05 69.48 10.57
Builders 15 5.38 73.68 29.24 70.11 4.86
Food 20 7.53 56.73 27.60 80.93 13.57
Paper 26 10.53 52.72 28.47 79.22 7.04
Publishing 27 2.78 63.93 18.87 70.62 8.87
Chemicals 28 5.75 63.17 30.04 74.96 12.42
Petroleum Products 29 6.58 45.99 23.36 74.48 10.54
Primary Metals 33 2.86 74.66 27.93 73.20 20.59
Machinery 35 2.64 71.44 28.84 64.77 12.24
Electric Equipment 36 3.23 80.04 26.19 70.24 11.95
Instruments 38 2.04 74.93 25.68 75.48 17.20
Transport (Air) 45 4.98 53.96 23.43 77.15 12.57
Telecom 48 7.45 77.50 30.12 72.40 13.99
Utilities 49 28.76 33.89 24.65 74.21 15.80
Wholesale (Non-durable) 51 4.34 62.59 30.17 75.32 15.84
Retail (Misc) 53 24.32 63.56 35.36 69.60 16.10
Banks 60 3.49 8.10 8.74 79.74 13.87
Insurance 63 2.26 65.43 25.22 64.81 9.34
Patent & Royalty 67 8.06 34.14 36.77 77.13 10.62
Hotels 70 3.99 88.97 20.08 71.23 13.70
Services - Equipment 73 5.42 77.82 27.70 74.65 16.92
Health 80 3.09 67.39 30.11 73.61 15.01
Overall average - 7.20 61.82 26.53 73.33 12.89
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Table III

Spread in Financial Leverage
The spread in financial leverage over all firm-years in the sample is measured using: i) the ratio
of the market value of debt divided by the sum of market value of debt and equity (D/A), and;
ii) interest cover, defined as EBITDA divided by interest expense. The average and standard
deviation across firm-years are reported for both measures. The final two columns report the
range of credit ratings observed in each industry over the sample period. Source: FISD, CRSP,
Compustat.

Industry 2-digit D/A (market) Interest Cover Credit rating
SIC mean stdev mean stdev min max

Oil & Gas 13 0.34 0.09 8.54 3.96 B+ A-
Builders 15 0.49 0.05 2.79 0.19 BB- BB
Food 20 0.28 0.16 8.51 4.03 BB+ AAA
Paper 26 0.47 0.11 3.55 1.24 B A
Publishing 27 0.19 0.15 12.57 6.89 BBB- AA
Chemicals 28 0.12 0.11 13.25 5.84 B AAA
Petroleum Products 29 0.27 0.11 9.27 5.21 BB A-
Primary Metals 33 0.19 0.07 9.02 2.82 BB- A+
Machinery 35 0.21 0.21 8.50 4.30 B AA
Electric Equipment 36 0.16 0.08 9.53 4.01 B AA+
Instruments 38 0.14 0.13 14.49 6.16 BB AA-
Transport (Air) 45 0.46 0.26 5.74 5.49 D BBB
Telecom 48 0.38 0.24 3.12 3.02 D AA
Utilities 49 0.49 0.10 4.36 1.73 B AA
Wholesale (Non-durable) 51 0.45 0.22 4.87 3.78 B A
Retail (Misc) 53 0.27 0.18 8.58 5.73 BB- A+
Banks 60 0.49 0.25 5.96 0.00 BBB A+
Insurance 63 0.18 0.10 14.65 4.10 BB+ AA
Patent & Royalty 67 0.41 0.20 7.27 4.36 BB- AAA
Hotels 70 0.39 0.14 3.91 1.55 BB- BBB-
Services - Equipment 73 0.18 0.21 13.32 5.04 D AAA
Health 80 0.25 0.19 9.72 6.62 B A+
Overall average - 0.31 0.15 8.25 3.91 D AAA
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Table IV

Parameter Estimates
Unobserved Debt at Face Value

This table reports the posterior mean and standard deviation of parameter estimates over the
1994-2004 sample of 244 U.S. firms’ monthly debt and equity values. The book value of the
unobserved portion of debt is used as a proxy for its market value. The model parameters are
estimated separately for each industry, using the MCMC algorithm described in appendix B.
Expected (ex-ante) costs of financial distress net of tax benefits and as a fraction of firm value,
C/V L, are a quadratic function of leverage, L: Ct/V L

t = θ0 + θ1Lt + θ2L
2
t . Leverage is defined as

the market value of debt divided by the market value of the firm (debt + equity).

Industry 2-digit θ0 θ1 θ2

SIC mean s.d. mean s.d. mean s.d.
Oil & Gas 13 -0.041 0.006 -0.142 0.031 0.173 0.016
Builders 15 0.003 0.034 -0.178 0.125 0.189 0.123
Food 20 -0.038 0.011 -0.246 0.040 0.507 0.051
Paper 26 -0.022 0.023 -0.230 0.020 0.281 0.009
Publishing 27 0.043 0.011 -0.988 0.065 1.780 0.204
Chemicals 28 -0.046 0.007 -0.035 0.016 0.240 0.031
Petroleum Products 29 -0.048 0.003 -0.275 0.061 0.715 0.124
Primary Metals 33 -0.036 0.018 -0.103 0.051 0.078 0.079
Machinery 35 -0.040 0.015 -0.029 0.027 0.087 0.030
Electric Equipment 36 -0.049 0.003 -0.114 0.031 0.304 0.058
Instruments 38 -0.049 0.003 -0.386 0.012 1.631 0.077
Transport (Air) 45 -0.047 0.005 -0.137 0.021 0.274 0.028
Telecom 48 -0.048 0.003 -0.104 0.015 0.245 0.015
Utilities 49 -0.043 0.007 -0.113 0.022 0.267 0.025
Wholesale (Non-durable) 51 -0.049 0.002 -0.130 0.045 0.294 0.063
Retail (Misc) 53 -0.044 0.005 -0.419 0.025 0.914 0.042
Banks 60 -0.010 0.003 -0.117 0.012 0.070 0.018
Insurance 63 0.010 0.010 -0.447 0.050 0.649 0.107
Patent & Royalty 67 -0.040 0.016 -0.181 0.047 0.345 0.062
Hotels 70 -0.041 0.004 -0.014 0.012 0.046 0.014
Services - Equipment 73 -0.039 0.011 -0.030 0.028 0.411 0.100
Health 80 -0.040 0.014 -0.373 0.038 0.671 0.046
Overall - -0.032 0.026 -0.218 0.214 0.462 0.458
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Table V

Parameter Estimates
Unobserved Debt at Credit Spread of Safest Bonds

This table reports the posterior mean and standard deviation of parameter estimates over the
1994-2004 sample of 244 U.S. firms’ monthly debt and equity values. The market value of the
unobserved portion of debt is calculated using the credit spread of the safest group of bonds.
The model parameters are estimated separately for each industry, using the MCMC algorithm
described in appendix B. Expected (ex-ante) costs of financial distress net of tax benefits and as
a fraction of firm value, C/V L, are a quadratic function of leverage, L: Ct/V L

t = θ0 +θ1Lt +θ2L
2
t .

Leverage is defined as the market value of debt divided by the market value of the firm (debt +
equity).

Industry 2-digit θ0 θ1 θ2

SIC mean s.d. mean s.d. mean s.d.
Oil & Gas 13 -0.013 0.012 -0.115 0.038 0.294 0.037
Builders 15 0.020 0.024 -0.339 0.094 0.401 0.083
Food 20 -0.046 0.009 -0.196 0.036 0.579 0.061
Paper 26 -0.046 0.006 -0.175 0.048 0.355 0.066
Publishing 27 0.040 0.013 -1.081 0.115 2.090 0.393
Chemicals 28 -0.018 0.007 -0.004 0.003 0.273 0.015
Petroleum Products 29 -0.048 0.003 -0.247 0.041 1.061 0.069
Primary Metals 33 -0.040 0.013 -0.146 0.050 0.171 0.034
Machinery 35 -0.041 0.012 -0.025 0.013 0.095 0.011
Electric Equipment 36 -0.049 0.004 -0.088 0.025 0.311 0.048
Instruments 38 -0.036 0.005 -0.355 0.045 1.453 0.178
Transport (Air) 45 -0.042 0.007 -0.190 0.042 0.349 0.047
Telecom 48 -0.049 0.002 -0.055 0.014 0.183 0.016
Utilities 49 -0.041 0.013 -0.109 0.020 0.270 0.027
Wholesale (Non-durable) 51 -0.049 0.002 -0.125 0.019 0.295 0.025
Retail (Misc) 53 0.004 0.008 -0.482 0.047 0.757 0.066
Banks 60 -0.011 0.006 -0.125 0.023 0.075 0.022
Insurance 63 -0.041 0.010 -0.292 0.160 0.872 0.322
Patent & Royalty 67 -0.036 0.015 -0.233 0.021 0.422 0.029
Hotels 70 -0.048 0.003 -0.037 0.013 0.131 0.014
Services - Equipment 73 -0.044 0.007 -0.043 0.031 0.432 0.145
Health 80 -0.038 0.016 -0.307 0.034 0.696 0.044
Overall - -0.030 0.026 -0.217 0.230 0.526 0.491
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Table VI

Upper Bound on Costs of Financial Distress
Unobserved Debt at Face Value

This table reports the upper bound on (ex-ante) expected costs of financial distress as a fraction of
levered firm value (CFD), for different leverage ratios, L. The final column shows the upper bound
on CFD at the observed industry leverage (aggregate book debt over all industry constituents
in Compustat divided by aggregate book debt plus market value of equity), averaged over the
sample period 1994-2004. The estimated model is Ct/V L

t = θ0 + θ1Lt + θ2L
2
t . The upper bound

on CFD is θ2L
2
t . The parameters are estimated separately for each industry, using the book value

of the unobserved portion of debt as a proxy for its market value, as reported in table IV. The
results are calculated using the posterior mean of θ2.

Industry 2-digit L = Observed
SIC 0.1 0.3 0.5 0.7 0.9 L

Oil & Gas 13 0.002 0.016 0.043 0.085 0.140 0.012
Builders 15 0.002 0.017 0.047 0.092 0.153 0.044
Food 20 0.005 0.046 0.127 0.248 0.411 0.017
Paper 26 0.003 0.025 0.070 0.138 0.228 0.030
Publishing 27 0.018 0.160 0.445 0.872 1.442 0.068
Chemicals 28 0.002 0.022 0.060 0.118 0.195 0.003
Petroleum Products 29 0.007 0.064 0.179 0.350 0.579 0.016
Primary Metals 33 0.001 0.007 0.020 0.038 0.063 0.008
Machinery 35 0.001 0.008 0.022 0.043 0.071 0.003
Electric Equipment 36 0.003 0.027 0.076 0.149 0.246 0.004
Instruments 38 0.016 0.147 0.408 0.799 1.321 0.024
Transport (Air) 45 0.003 0.025 0.068 0.134 0.222 0.075
Telecom 48 0.002 0.022 0.061 0.120 0.198 0.018
Utilities 49 0.003 0.024 0.067 0.131 0.216 0.060
Wholesale (Non-durable) 51 0.003 0.026 0.074 0.144 0.238 0.015
Retail (Misc) 53 0.009 0.082 0.228 0.448 0.740 0.048
Banks 60 0.001 0.006 0.018 0.034 0.057 0.027
Insurance 63 0.006 0.058 0.162 0.318 0.526 0.075
Patent & Royalty 67 0.003 0.031 0.086 0.169 0.279 0.068
Hotels 70 0.000 0.004 0.011 0.022 0.037 0.005
Services - Equipment 73 0.004 0.037 0.103 0.201 0.333 0.004
Health 80 0.007 0.060 0.168 0.329 0.543 0.053
Average - 0.005 0.042 0.116 0.227 0.374 0.031

55



Table VII

Lower Bound on Costs of Financial Distress
Unobserved Debt at Face Value

This table reports the lower bound on (ex-ante) expected costs of financial distress as a fraction of
levered firm value (CFD) for different leverage ratios, L. The final column shows the lower bound
on CFD at the observed industry leverage (aggregate book debt over all industry constituents
in Compustat divided by aggregate book debt plus market value of equity), averaged over the
sample period 1994-2004. The estimated model is Ct/V L

t = θ0 + θ1Lt + θ2L
2
t . The lower bound

on CFD is max(0, θ1Lt + θ2L
2
t ). The parameters are estimated separately for each industry, using

the book value of the unobserved portion of debt as a proxy for its market value, as reported in
table IV. The results are calculated using the posterior mean of θ1 and θ2.

Industry 2-digit L = Observed
SIC 0.1 0.3 0.5 0.7 0.9 L

Oil & Gas 13 0.000 0.000 0.000 0.002 0.017 0.000
Builders 15 0.000 0.000 0.000 0.001 0.004 0.000
Food 20 0.000 0.000 0.006 0.076 0.189 0.000
Paper 26 0.000 0.000 0.000 0.000 0.024 0.000
Publishing 27 0.000 0.000 0.001 0.181 0.553 0.000
Chemicals 28 0.000 0.011 0.043 0.094 0.164 0.000
Petroleum Products 29 0.000 0.000 0.041 0.158 0.332 0.000
Primary Metals 33 0.000 0.000 0.001 0.008 0.022 0.000
Machinery 35 0.000 0.003 0.011 0.026 0.047 0.001
Electric Equipment 36 0.000 0.000 0.019 0.069 0.143 0.000
Instruments 38 0.000 0.031 0.215 0.529 0.973 0.000
Transport (Air) 45 0.000 0.000 0.002 0.038 0.099 0.004
Telecom 48 0.000 0.000 0.009 0.047 0.104 0.000
Utilities 49 0.000 0.000 0.011 0.052 0.115 0.007
Wholesale (Non-durable) 51 0.000 0.000 0.009 0.053 0.121 0.000
Retail (Misc) 53 0.000 0.000 0.019 0.155 0.363 0.000
Banks 60 0.000 0.000 0.000 0.000 0.000 0.000
Insurance 63 0.000 0.000 0.000 0.011 0.123 0.000
Patent & Royalty 67 0.000 0.000 0.002 0.042 0.116 0.000
Hotels 70 0.000 0.001 0.005 0.013 0.024 0.002
Services - Equipment 73 0.001 0.028 0.088 0.180 0.306 0.001
Health 80 0.000 0.000 0.000 0.068 0.208 0.000
Average - 0.000 0.003 0.022 0.082 0.184 0.001
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Table VIII

Upper Bound on Costs of Financial Distress
Unobserved Debt at Credit Spread of Safest Bonds

This table reports the upper bound on (ex-ante) expected costs of financial distress as a fraction of
levered firm value (CFD), for different leverage ratios, L. The final column shows the upper bound
on CFD at the observed industry leverage (aggregate book debt over all industry constituents
in Compustat divided by aggregate book debt plus market value of equity), averaged over the
sample period 1994-2004. The estimated model is Ct/V L

t = θ0+θ1Lt+θ2L
2
t . The upper bound on

CFD is θ2L
2
t . The parameters are estimated separately for each industry, using the credit spread

of the safest group of bonds to calculate the market value of the unobserved portion of debt, as
reported in table V. The results are calculated using the posterior mean of θ2.

Industry 2-digit L = Observed
SIC 0.1 0.3 0.5 0.7 0.9 L

Oil & Gas 13 0.003 0.026 0.073 0.144 0.238 0.020
Builders 15 0.004 0.036 0.100 0.196 0.325 0.094
Food 20 0.006 0.052 0.145 0.284 0.469 0.019
Paper 26 0.004 0.032 0.089 0.174 0.288 0.037
Publishing 27 0.021 0.188 0.523 1.024 1.693 0.080
Chemicals 28 0.003 0.025 0.068 0.134 0.221 0.003
Petroleum Products 29 0.011 0.096 0.265 0.520 0.860 0.024
Primary Metals 33 0.002 0.015 0.043 0.084 0.138 0.018
Machinery 35 0.001 0.009 0.024 0.047 0.077 0.003
Electric Equipment 36 0.003 0.028 0.078 0.152 0.252 0.004
Instruments 38 0.015 0.131 0.363 0.712 1.177 0.021
Transport (Air) 45 0.004 0.036 0.101 0.197 0.326 0.111
Telecom 48 0.002 0.016 0.046 0.090 0.148 0.013
Utilities 49 0.003 0.024 0.067 0.132 0.219 0.061
Wholesale (Non-durable) 51 0.003 0.027 0.074 0.145 0.239 0.015
Retail (Misc) 53 0.011 0.095 0.264 0.516 0.854 0.055
Banks 60 0.001 0.007 0.019 0.037 0.061 0.028
Insurance 63 0.009 0.079 0.218 0.427 0.707 0.100
Patent & Royalty 67 0.005 0.049 0.136 0.266 0.440 0.107
Hotels 70 0.001 0.012 0.033 0.064 0.106 0.015
Services - Equipment 73 0.004 0.039 0.108 0.212 0.350 0.004
Health 80 0.007 0.063 0.174 0.341 0.564 0.055
Average - 0.005 0.049 0.137 0.268 0.443 0.040
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Table IX

Lower Bound on Costs of Financial Distress
Unobserved Debt at Credit Spread of Safest Bonds

This table reports the lower bound on (ex-ante) expected costs of financial distress as a fraction of
levered firm value (CFD), for different leverage ratios, L. The final column shows the lower bound
on CFD at the observed industry leverage (aggregate book debt over all industry constituents
in Compustat divided by aggregate book debt plus market value of equity), averaged over the
sample period 1994-2004. The estimated model is Ct/V L

t = θ0 + θ1Lt + θ2L
2
t . The lower bound

on CFD is max(0, θ1Lt + θ2L
2
t ). The parameters are estimated separately for each industry, using

the credit spread of the safest group of bonds to calculate the market value of the unobserved
portion of debt, as reported in table V. The results are calculated using the posterior mean of θ1

and θ2.

Industry 2-digit L = Observed
SIC 0.1 0.3 0.5 0.7 0.9 L

Oil & Gas 13 0.000 0.000 0.016 0.063 0.134 0.000
Builders 15 0.000 0.000 0.000 0.001 0.021 0.000
Food 20 0.000 0.000 0.047 0.146 0.292 0.000
Paper 26 0.000 0.000 0.004 0.052 0.131 0.000
Publishing 27 0.000 0.000 0.013 0.268 0.720 0.000
Chemicals 28 0.002 0.023 0.066 0.131 0.217 0.002
Petroleum Products 29 0.000 0.021 0.142 0.347 0.637 0.000
Primary Metals 33 0.000 0.000 0.000 0.001 0.020 0.000
Machinery 35 0.000 0.002 0.011 0.029 0.054 0.000
Electric Equipment 36 0.000 0.002 0.034 0.091 0.173 0.000
Instruments 38 0.000 0.024 0.186 0.463 0.857 0.000
Transport (Air) 45 0.000 0.000 0.027 0.095 0.194 0.034
Telecom 48 0.000 0.001 0.018 0.051 0.099 0.001
Utilities 49 0.000 0.000 0.013 0.056 0.121 0.009
Wholesale (Non-durable) 51 0.000 0.000 0.011 0.057 0.126 0.000
Retail (Misc) 53 0.000 0.005 0.113 0.305 0.582 0.000
Banks 60 0.000 0.000 0.000 0.000 0.000 0.000
Insurance 63 0.000 0.003 0.072 0.223 0.444 0.008
Patent & Royalty 67 0.000 0.000 0.012 0.094 0.218 0.000
Hotels 70 0.000 0.001 0.014 0.038 0.072 0.003
Services - Equipment 73 0.001 0.026 0.087 0.182 0.312 0.001
Health 80 0.000 0.000 0.020 0.126 0.287 0.000
Average - 0.000 0.005 0.041 0.128 0.260 0.003
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Table X

Estimates of Ex-post Costs of Financial Distress
This table shows the ex-post costs of financial distress as a fraction of firm value. Ex-post costs
of financial distress (”loss-given-default”) are the costs of financial distress once bankruptcy has
been filed, and equal θ1 + θ2, as a fraction of firm value. The third and fourth columns show the
posterior mean and standard deviation of ex-post CFD when parameters are estimated using the
book value of the unobserved debt as a proxy for its market value, as reported in table IV. The
fifth and sixth columns show the mean and standard deviation of ex-post CFD when parameters
are estimated using the credit spread of the safest group of bonds to calculate the market value
of the unobserved debt, as reported in table V.

Industry 2-digit Face Credit spread
SIC mean s.d. mean s.d.

Oil & Gas 13 0.032 0.023 0.178 0.006
Builders 15 0.011 0.011 0.062 0.017
Food 20 0.261 0.013 0.383 0.026
Paper 26 0.051 0.028 0.181 0.019
Publishing 27 0.792 0.152 1.009 0.289
Chemicals 28 0.206 0.015 0.269 0.014
Petroleum Products 29 0.440 0.063 0.814 0.030
Primary Metals 33 -0.024 0.093 0.025 0.037
Machinery 35 0.058 0.040 0.070 0.008
Electric Equipment 36 0.190 0.027 0.223 0.023
Instruments 38 1.244 0.073 1.098 0.139
Transport (Air) 45 0.137 0.008 0.158 0.011
Telecom 48 0.140 0.001 0.128 0.002
Utilities 49 0.154 0.008 0.161 0.010
Wholesale (Non-durable) 51 0.164 0.018 0.170 0.007
Retail (Misc) 53 0.495 0.020 0.274 0.027
Banks 60 -0.046 0.011 -0.050 0.014
Insurance 63 0.201 0.060 0.580 0.164
Patent & Royalty 67 0.164 0.015 0.189 0.009
Hotels 70 0.031 0.015 0.093 0.008
Services - Equipment 73 0.381 0.077 0.390 0.119
Health 80 0.298 0.009 0.389 0.011
Average - 0.245 0.294 0.309 0.312
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Table XII

Regressions of Observed Leverage on Distress Parameters
OLS regressions results of observed leverage on distress parameters and industry characteristics.
The dependent variable is observed industry leverage, calculated as the aggregate book debt over
all industry constituents in Compustat divided by aggregate book debt plus market value of equity,
averaged over the sample period 1994-2004. θ1 and θ2 are the posterior mean estimates from table
IV. θ1/θ2 is the posterior mean of the distribution of θ1 divided by θ2. σV is an industry measure
of unlevered firm volatility, calculated as the posterior mean standard deviation of unlevered asset
returns, averaged over the sample firms in each industry. The other explanatory variables are as
defined in table XI. Standard errors are in parentheses. ***, **, and * denote significance at the
1%, 5% and 10% levels, respectively.

Specification: I II III IV V VI

θ1 -0.544 . . . . .
(0.262)** . . . . .

θ2 -0.344 . . . . .
(0.122)** . . . . .

θ1/θ2 . -0.298 . -0.225 . -0.176
. (0.072)*** . (0.077)** . (0.072)**

Intang / Assets . . -0.225 -0.325 . .
. . (0.328) (0.270) . .

R&D / Sales . . -0.511 -0.240 . .
. . (0.738) (0.610) . .

M/B . . -0.053 -0.026 -0.074 -0.050
. . (0.021)** (0.019) (0.015)*** (0.016)***

EBITDA / Sales . . 0.089 0.120 . .
. . (0.072) (0.060)* . .

σV . . -0.169 0.432 . .
. . (0.919) (0.778) . .

Log(Assets) . . -0.009 -0.025 . .
. . (0.023) (0.020) . .

Intercept 0.326 0.122 0.576 0.338 0.557 0.378
(0.040)*** (0.046)** (0.133)*** (0.136)** (0.061)*** (0.091)***

adjusted R2 0.238 0.437 0.454 0.636 0.507 0.607
F 4.287 17.267 3.911 6.245 22.632 17.229
p 0.029 0.000 0.015 0.002 0.000 0.000
N 22 22 22 22 22 22
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Table XIII

Gains and Costs to Adjusting Leverage
The gain in firm value from adjusting leverage (column 5) is calculated as the difference in total
firm value at the fifth percentile of the industry’s leverage distribution and firm value at the
industry’s optimal leverage ratio, using the parameters from table IV. Column 6 shows the cost
of the leverage adjustment if direct issuance costs are 3% of issue size. Both the gain and cost of
adjusting leverage are expressed as a fraction of firm value. Leverage (L) is measured as the book
value of debt divided by the book value of debt plus market value of equity for each Compustat
firm in the industry, for each sample year separately. The standard deviation of L across firm-years
and the (5%,95%) interval are shown in columns 3 and 4.

Industry 2-digit s.d.(L) L (5%,95%) Gain from Adj.
SIC relevering cost

Oil & Gas 13 0.212 (0.052, 0.597) 0.006 0.004
Builders 15 0.237 (0.170, 0.816) 0.026 0.008
Food 20 0.215 (0.044, 0.595) 0.009 0.004
Paper 26 0.231 (0.105, 0.734) 0.007 0.004
Publishing 27 0.218 (0.017, 0.559) 0.122 0.007
Chemicals 28 0.198 (0.004, 0.447) 0.000 0.000
Petroleum Products 29 0.192 (0.082, 0.546) 0.001 0.001
Primary Metals 33 0.254 (0.096, 0.790) 0.019 0.010
Machinery 35 0.214 (0.004, 0.525) 0.002 0.004
Electric Equipment 36 0.211 (0.004, 0.500) 0.006 0.004
Instruments 38 0.188 (0.003, 0.409) 0.021 0.004
Transport (Air) 45 0.283 (0.073, 0.862) 0.005 0.003
Telecom 48 0.262 (0.044, 0.754) 0.002 0.003
Utilities 49 0.176 (0.223, 0.656) 0.000 0.000
Wholesale (Non-durable) 51 0.253 (0.029, 0.697) 0.010 0.006
Retail (Misc) 53 0.272 (0.034, 0.758) 0.013 0.003
Banks 60 0.229 (0.133, 0.754) 0.037 0.021
Insurance 63 0.188 (0.046, 0.483) 0.013 0.004
Patent & Royalty 67 0.246 (0.086, 0.790) 0.011 0.004
Hotels 70 0.277 (0.148, 0.904) 0.000 0.000
Services - Equipment 73 0.220 (0.001, 0.494) 0.001 0.001
Health 80 0.257 (0.016, 0.705) 0.029 0.006
Average - 0.219 (0.061, 0.625) 0.015 0.006

62



Table XIV

Simulation Parameters
This table lists the model’s parameters with a brief description of their meaning, and the value
used in simulation. Costs of financial distress net of tax benefits and relative to total firm value,
C/V L, is a quadratic function of leverage, L: Ct/V L

t = θ0 + θ1Lt + θ2L
2
t + ut. The ut have mean

zero and variance R. The relation between an individual firm’s debt, equity and asset betas is
subject to an error, vt, with mean zero, variance S and correlation ρ with ut. Both ut and vt

are i.i.d. over time and independent across firms. The industry unlevered asset beta follows an
AR(1) process βU

t+1 = φ0 + φ1β
U
t + ηt. Debt and equity returns are generated from the CAPM,

where the idiosyncratic returns are correlated with coefficient ρDE .

Parameter Definition Value

Costs of Financial Distress (CFD)
θ0 CFD when leverage = 0 0
θ1 Negative of marginal tax rate -0.2
θ2 CFD parameter 0.3
R Variance of error ut 0.0052

S Variance of error vt 0.052

ρ Correlation between ut and vt 0.1
Unlevered asset beta (βV )
βU

0 Starting value 1
φ0 Intercept of AR(1) 0.02
φ1 Auto-regressive coefficient 0.98
H Variance of AR(1) error ηt 0.012

Firm-specific returns
σE Annualized s.d. of idiosynractic shock to equity returns 0.1
σD Annualized s.d. of idiosynractic shock to debt returns 0.05
ρDE Correlation between idiosyncratic shocks to debt and equity 0.3
Market parameters
rf Risk-free rate (constant, annualized) 0.04
E(rM

t − rf ) Annualized expected excess market return 0.07
σ(rM

t − rf ) Annualized volatility of excess market return 0.15
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Table XV

Parameter Estimates from Simulations
This table shows summary statistics of MCMC posterior means and standard deviations from
100 simulated datasets of equal length and frequency as the empirical data in the paper. The
parameter values used for the simulations are shown in table XIV. The parameters θ0, θ1 and θ2

are estimated on each dataset of simulated debt and equity values, using the MCMC procedure
described in appendix B. Four different scenarios are used: A) The market value of corporate
debt is perfectly observed; B) debt market value is observed in only one half of the months; C)
Same as scenario B but when observed, the market value of debt is biased upwards as if the model
were fitted using book values of bank debt instead of market values; D) Same as A but unlevered
asset betas are different across firms within the same industry.

Panel A: Perfectly Observed Debt
Posterior mean Posterior s.d.
mean s.d. mean s.d.

θ0 -0.001 0.000 0.001 0.000
θ1 -0.197 0.010 0.021 0.011
θ2 0.285 0.020 0.038 0.018

Panel B: 50% Observed Debt
Posterior mean Posterior s.d.
mean s.d. mean s.d.

θ0 -0.001 0.000 0.001 0.000
θ1 -0.199 0.026 0.024 0.030
θ2 0.286 0.042 0.041 0.042

Panel C: Bank Debt at Book Value
Posterior mean Posterior s.d.
mean s.d. mean s.d.

θ0 -0.001 0.000 0.001 0.001
θ1 -0.194 0.087 0.028 0.050
θ2 0.245 0.128 0.043 0.056

Panel D: Unlevered Asset Betas
Posterior mean Posterior s.d.
mean s.d. mean s.d.

θ0 -0.001 0.000 0.001 0.001
θ1 -0.200 0.018 0.025 0.034
θ2 0.297 0.108 0.043 0.056
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Figure 1

Betas as a Function of Leverage
This figure depicts the relation between leverage and the beta of a firm’s debt, equity and assets,
with and without tax benefits and/or costs of financial distress. Leverage is defined as the market
value of debt, D, divided by the total market value of the firm, V L = D + E, with E the market
value of the company’s equity. βD is the beta of the company’s debt and βE is the beta of the
firm’s equity. The levered firm beta is defined as the weighted average of debt and equity betas:
βL = D

V L βD + E
V L βE . The unlevered asset beta is assumed equal to 1.
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Figure 2

Levered Firm Beta as a Function of Leverage
This figure depicts the relation between financial leverage and the beta of the levered firm when
there are tax benefits and costs of financial distress. The costs of financial distress net of tax
benefits, relative to firm value, are Ct/V L

t = −0.2Lt+θ2L
2
t . The marginal tax rate that determines

the tax benefits of debt is 20%. Costs of financial distress are driven by θ2 ≥ 0. When θ2 equals
zero, there are no CFD. The higher θ2, the higher the costs of financial distress at a given
leverage ratio. The levered firm beta is defined as the weighted average of debt and equity betas:
βL = D

V L βD + E
V L βE . The unlevered beta is assumed equal to 1.
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Figure 3

Implied Optimal Leverage versus Observed Leverage,
Unobserved Debt at Face Value

Box-plot of the distribution of optimal leverage for each industry, as implied by the posterior
distribution of model parameter estimates. The model is estimated using the market values of
debt and equity for a subset of industry constituents, assuming the unobserved portion of debt
trades at face value, as in table IV. Model-implied optimal leverage represents the optimal ratio
of the market value of debt to the market value of debt plus equity, and is calculated as −θ1/2θ2.
The (red) horizontal line within the box is the median of the distribution, and the boundaries of
the box represent the first and third quartiles. The horizontal lines outside the box are drawn
at the minimum and maximum or 1.5 times the interquartile range, whichever is closer to the
box. Values outside this range are considered outliers. The vertical lines extend to the minimum
and maximum of the distribution. The (black) circles are the observed industry leverage ratios,
calculated as the aggregate book debt over all industry constituents in Compustat divided by
aggregate book debt plus market value of equity, averaged over the sample period 1994-2004.
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Figure 4

Implied Optimal Leverage versus Observed Leverage,
Unobserved Debt at Credit Spread of Safest Bonds

Box-plot of the distribution of optimal leverage for each industry, as implied by the posterior
distribution of model parameter estimates. The model is estimated using the market values of
debt and equity for a subset of industry constituents, assuming the unobserved portion of debt
is traded at the credit spread of the safest publicly-traded bond of the same firm, as in table V.
Model-implied optimal leverage represents the optimal ratio of the market value of debt to the
market value of debt plus equity, and is calculated as −θ1/2θ2. The (red) horizontal line within
the box is the median of the distribution, and the boundaries of the box represent the first and
third quartiles. The horizontal lines outside the box are drawn at the minimum and maximum
or 1.5 times the interquartile range, whichever is closer to the box. Values outside this range are
considered outliers. The vertical lines extend to the minimum and maximum of the distribution.
The (black) circles are the observed industry leverage ratios, calculated as the aggregate book
debt over all industry constituents in Compustat divided by aggregate book debt plus market
value of equity, averaged over the sample period 1994-2004.
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